REGULATION OF THE EPSTEIN-BARR VIRUS LIFE-CYCLE BY CELLULAR MICRORNAS.

Zhen Lin, Xia Wang, Claire Fewell, Jennifer Cameron, Qinyan Yin, and Erik K. Flemington

Department of Pathology, Tulane Health Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112.

Epstein-Barr virus (EBV) is an important human pathogen which is involved in a variety of human malignant and non-malignant diseases. EBV exhibits two distinct stages in its life-cycle: the latency and lytic reactivation. The switch between the latency and the lytic production has to be tightly regulated in order to maintain a homeostatic viral life-cycle. Recently accumulating evidence has suggested that microRNAs are also involved in the regulation of viral life-cycle. The interaction between virus and its host cells usually leads to the disruption of the cellular miRNA profiles. Viruses either utilize the host cellular miRNAs or encode their own miRNAs to regulate cellular environment in order to create an optimized condition for their replication. In our current study, we identified some human cellular miRNAs which can actively regulate EBV's life-cycle.

This work was supported by NIH grants (CA124311, CA130752, and CA138268 – EKF) and an NIH COBRE (P20 RR020152 - P Deininger).