Compounds for Repair and Prevention of Damage to Organs Caused by Pharmaceutical Agents

Inventors

David H. Coy, Ph.D.
Jerome L. Maderdrut, Ph.D.
Min Li, M.D. Ph.D.
Vecihi Batuman, M.D.
Akira Arimura, M.D., Ph.D.

Intellectual Property

• PCT/US2005/025836
 National: U.S., Canada, EU
• PCT/US2009/058445
 National: U.S., Canada, EU, Japan, Australia, China
• PCT/US2010/055164
 National: U.S., Canada, EU, Japan, Australia, China
• PCT/US2011/23930
 National: U.S., Canada, EU, Australia
• PCT/US2012/065586

Available For

• Exclusive Licensing in a Field
• Non-exclusive Licensing
• Scientific Collaboration

For more information, please contact:
Justin Levy
Licensing Associate
504-988-6962
jlevy5@tulane.edu

Tulane University is actively seeking commercial entities to further develop and commercialize novel pituitary adenylate cyclase-activating polypeptide (PACAP)-like compounds that can prevent damage to organs caused by many commonly used therapeutic agents.

Applications

• For use with many anticancer agents, including tubulin inhibitors (especially, Vinca alkaloids), cisplatin and thalidomide, that have been used for the treatment of leukemias and plasma cell dyscrasias
• For use with many immunosuppressive agents, including cyclosporine A, FK506 (tacrolimus), rapamycin (sirolimus), and methotrexate, that have been used for the treatment of autoimmune diseases (especially, systemic lupus erythematosus, Crohn's disease and rheumatoid arthritis)
• For the preservation of cells and organs for transplantation
• For the treatment or prevention of renal dysfunction

Advantages

• Can potentiate the on-target effects of many anticancer and immunosuppressive agents
• Can be administered before or during treatment with anticancer or immunosuppressive agents
• Can be delivered by many minimally invasive routes, including intravenously, intraperitoneally, intranasally, subcutaneously, and intramuscularly

Development Status

The prototypic compound, PACAP, has been tested in humans by several laboratories in the European Union and at Tulane University under an FDA-approved single-patient protocol. This technology has been tested extensively in vitro. Preliminary in vivo experiments have been published. Work is ongoing for further characterization in preclinical mouse models.