L. Lee Hamm, MD, named Senior Vice President & Dean of Tulane University School of Medicine

Dr. Lee Hamm, Co-Director of the Tulane Hypertension and Renal Center of Excellence was appointed as Senior Vice President and Dean of Tulane University School of Medicine, effective July 1, 2013.

Dr. Hamm joined Tulane University’s faculty in 1992 as professor of medicine and physiology and Chief of the Section of Nephrology and Hypertension. He served as Harry B. Greenberg Chair of Medicine at Tulane, the Executive Vice Dean of the School of Medicine, and as Interim Dean of the School of Medicine in 2007.

“I am honored and thrilled by the prospect of leading a school that is as nationally recognized and accomplished as Tulane School of Medicine,” Hamm said. “I look forward to working with a team that will enable Tulane to continue its leadership role in educating the next generation of doctors, conducting life-saving research and advancing medical breakthroughs while facing the challenges and opportunities brought about by the dramatic changes in healthcare, both locally and nationally.”

The news was featured in the June 19 edition of New Wave and can be accessed at http://tulane.edu/news/releases/pr_06192013.cfm.
Oliver Fund Award for Excellence

Co-Director of THRCE and Director of COBRE (5P30GM103337-02), Dr. L. Gabriel Navar was awarded the inaugural Oliver Fund Award for Excellence in Faculty Mentoring on May 17 at Ivy Day during Tulane University Commencement Ceremony. He was also recognized during the Medical School’s diploma ceremony on May 18. The award was established to honor the commitment of senior faculty members to the success of junior faculty members and Tulane as a whole through mentoring. As recipient of this award Dr. Navar was featured in the April 26 edition of New Wave. You may access the news at: http://tulane.edu/news/newwave/042613_navar.cfm.

Hypertension prevention and control program to be tested in Argentina

Co-Director of the COBRE Clinical & Translational Core facility and the Joseph S. Copes, MD, Chair in the Department of Epidemiology, Dr. Jiang He was awarded a five-year, $2.1 million grant from the National Heart, Lung and Blood Institute of the National Institutes of Health, to study the effectiveness of a comprehensive intervention program to improve hypertension prevention and control among uninsured patients and their families in Argentina. The trial will recruit 1,888 study participants from 16 primary care clinics in Argentina. Eight clinics will be randomly assigned to the comprehensive intervention group, and eight to the usual care group. Patients with high blood pressure and their adult family members will be enrolled. As recipient of the grant, Dr. He was featured in the June 5 edition of New Wave. You may access the news at: https://tulane.edu/news/releases/pr_060512.cfm.
Honors & Recognition Awarded to THRCE Affiliated Investigators

Dr. L. Gabriel Navar:
- Was elected by the Association of American Medical Colleges (AAMC) Board of Directors as an Emeritus Member of the AAMC.
- Was awarded Year 2 of the COBRE Grant (5P30GM103337-02) from NIH in the amount of $1,057,709 for the period 08/01/2013 – 07/31/2014. The title of the grant is, “Translational Research in Hypertension and Renal Biology.”

Dr. Samir El-Dahr played a leading role in the initiation of Pediatric Hypertension Clinic through the Children's Health Fund, Medical Mobile Units, Tulane University School of Medicine.

Dr. Dewan S. A. Majid received 2013 IUPSAPS Travel Award to attend the International Union of Physiological Sciences (IUPS) Congress held in July, 2013 in Birmingham, England.

Dr. Kenneth D. Mitchell:
- Was nominated as Outstanding T1 Professor and the Department was nominated for Outstanding Department at the Owl Club.
- Published a paper on the Debakey Program in Medical Science Educator Journal.

Dr. Kailash N. Pandey was recognized for his distinguished work in the field of research in cardiac function and awarded the Hans-Peter Krayenbuehl Memorial Award. Dr. Pandey, Professor of the Department of Physiology and the Director of COBRE Animal Core Facility, was presented this prestigious award at the International Academy of Cardiology-18th World Congress on Heart Disease held in Vancouver, Canada.
Honors & Recognition Awarded to THRCE Affiliated Investigators, continued...

Dr. Yumei Feng:
- Received **2013 IUPS Travel Award** to attend the International Union of Physiological Sciences (IUPS) Congress held in July, 2013 in Birmingham, England.
- Received a “Emerging Faculty Travel Grant” from the Board of Regents to attend the IUPS 2013 Congress that was held in Birmingham, England. She was an invited speaker and participated in a symposium entitled, “Recent Advances in Renin-angiotensin System in Health and Disease.”

Dr. Kathleen Hering-Smith:
- On August 8, 2012, received the **2011-2012 Department of Medicine Chair's Award for Excellence in Research**.
- Appointed as member of the Editorial Board of the American Journal of Physiology: Renal.
- Served as Marshall for the Graduate Student Hooding Ceremony.
- Selected as a Delegate to American Society of Nephrology first PhD summit held in Washington DC in June 10-11, 2013.

Dr. Minolfa C. Prieto was:
- Elected as Secretary of the Renal Section of the American Physiological Society (APS) starting after the Experimental Biology Meeting April 22, 2013.
- Appointed as member of the Editorial Board of the American Journal of Physiology: Renal.

Dr. Andrea Zsombok was:
- Awarded the Tulane University’s CELT Fund for Faculty-Student Scholarly and Artistic Engagement.
- Received a BOR Faculty Travel Award.

2013 Staff Recognition Luncheon hosted by Dean, Dr. Benjamin Sachs:
- Ms. Amelia Chaisson, Departmental administrator, was recognized for her 30 years of service to Tulane University School of Medicine.
- THRCE Senior Program Coordinator, Nina R. Majid, and THRCE affiliate, Porcha Davis, were each recognized for their 5 years of service.
The following THRCE affiliates and Tulane doctors were recognized as the Best Doctors in New Orleans, 2013.

- Cardiovascular Disease: Patrice Delafontaine
- Nephrology:
 - A. Brent Alper Jr.
 - Vecihi Batuman
 - L. Lee Hamm
 - N. Kevin Krane
 - Eric Edward Simon
- Pediatric Nephrology
 - Samir S. El-Dahr
 - Ihor V. Yosypiv
- Surgery: Douglas P. Slakey

The Best Doctors in America® database includes doctors in 45 specialties and more than 400 subspecialties of medicine and lists the most respected specialists and outstanding primary care physicians in the nation who other doctors recognize as the best in their fields. The Best Doctors in America® database selects doctors by partnering with Best Doctors, Inc., a global health company headquartered in Boston, which serves more than 30 million members in every major region of the world, and works with the best five percent of doctors practicing in the United States to find the right diagnoses and treatment plans.

2013 New Orleans Heart Walk

THRCE is once again participating in the New Orleans Heart Walk benefiting the American Heart Association (AHA). Cardiovascular diseases or stroke have or will somehow effect many of our friends, family members and/or co-workers. The funds raised will be used for critical research and education on cardiovascular diseases.

Please support the 2013 AHA fundraiser by:
1. Making a secure, tax-deductible online donation by visiting the page, http://neworleansheartwalk.kintera.org/nmajid and clicking on the “Give Now” link.
2. Volunteering your time and join in the walk! The 2013 Heart Walk is happening Saturday, November 2 at LaSalle Park. It’s a fun filled event and it’s for a good cause.
THRCE welcomes 2013 Summer Students

The Tulane Hypertension & Renal Center of Excellence is pleased to host Medical and Undergraduate Summer Research Students. For 8 to 10 weeks, Summer Research Students work with Centers’ researchers. The Medical and Undergraduate summer students are exposed to the nature of a career path in research and have the opportunity to attend the THRCE events and Seminars.

Sponsor: NIH/NCRR, R21 AGT
- Ullman, Stacey M
 Mentor: Dr. V. Fonseca/ LG Navar.

Sponsor: Department of Cell & Molecular Biology
- Cypress, Michael Winthers, (Graduate student)
 Mentors: Dr. L. Gabriel Navar & Dr. Ryosuke Sato.

Sponsor: Tulane Neuroscience Program Summer Fellowship: CELT Summer Program Award & the Lurcy Award
- Valmoria, Melisa S, (undergraduate student)
 Mentor: Dr. Andrea Zsombok.

Sponsor: Department of Physiology
- Cao, Teresa
 Mentor: Dr. Yumei Feng.
- Chen, David
 Mentor: Dr. Kailash Pandey.
- Cuevas, Denise A (Visiting Student)
 Mentor: Dr. Minolfa C. Prieto.
- Sigmon, David
 Mentor: Dr. Kenneth D. Mitchell.
- Thompson, David A
 Mentor: Dr. Kenneth D. Mitchell.

Sponsor: Tulane’s Neuroscience Program
- Anwar, Imran J.
 Mentor: Dr. Andrei V. Derbenev.
THRCE regularly sponsors bi-weekly seminars by scheduling nationally and internationally recognized investigators and clinicians in the field of hypertension research, treatment and education. From May through August, 2013, the center invited the following speakers to present THRCE seminars:

- **Tanika Kelly, PhD**
 Assistant Professor,
 Department of Epidemiology,
 Tulane School of Public Health & Tropical Medicine,
 New Orleans, LA.

On May 9, 2013, Dr. Tanika Kelly presented “Genomic and Environmental Determinants of Human Hypertension.” Elevated BP is a major global health challenge due to its high prevalence and associated increases in risk of cardiovascular disease (CVD) and premature death. As the most important modifiable risk factor for CVD and all-cause mortality, elevated BP was responsible for approximately 7.6 million deaths globally, or 13.5% of all deaths, in 2001. BP is influenced by both genomic and environmental factors, as well as their interactions. Although established early on as an inheritable trait with many monogenic forms of BP dysregulation clearly described, our understanding of the genomic architecture of the complex BP phenotype was initially slow to progress. Early genome-wide linkage analyses, candidate gene studies, and genome-wide association studies (GWAS) were relatively unsuccessful in identifying reproducible loci related to BP. However, increased methodological stringency and the recent formations of large BP consortia have enabled important breakthroughs in hypertension genomic research. Through GWAS meta-analyses, numerous loci have now been robustly associated with BP in populations of European and Asian ancestries. Although much of the heritability of BP still remains unexplained, there is renewed optimism as we turn our attention towards next-generation approaches for the discovery of novel genomic determinants of this complex trait.
Dr. Yusuke Higashi presented, “Anti-oxidant effect of Insulin-like growth factor-1 in vascular endothelial cells – a potential mechanism for atheroprotection,” on May 23, 2013. Dr. Higashi and colleagues at Tulane University Heart and Vascular Institute (Director: Dr. Patrice Delafontaine) have been investigating potential roles of insulin-like growth factor-1 (IGF-1) in development and progression of atherosclerosis, which causes severe vascular complications such as stroke and coronary heart disease and thus is the No. 1 killer in the United States. The disease process involves multiple cell types and their interactions, i.e. a vicious cycle of elevated oxidative stress, inflammation, vascular smooth muscle cell mobilization and proliferation, followed by cell death and tissue degeneration (or necrotic core formation). Traditionally, the role of growth factors in atherosclerosis has been considered to be permissive, in particular, by stimulating smooth muscle cell migration and proliferation, thereby promoting thickening of the inner leaf of the vascular wall (or neointima formation). Dr. Higashi and colleagues took steps to define roles of IGF-1 in the pathogenesis of atherosclerosis using the apolipoprotein e deficient mouse, a widely used animal model for atherosclerosis. Intriguingly, contrary to the general perception that growth factors promote atherosclerosis, they found that an elevation of circulating IGF-1 levels reduces atherosclerosis development, whereas a decrease in circulating IGF-1 levels results in an advancement of atherosclerosis, demonstrating atheroprotection by IGF-1. In fact, systemic elevation of IGF-1 suppressed oxidative stress levels and inflammatory responses in atherosclerotic lesions. To further investigate mechanisms of atheroprotection by IGF-1, they took a genetic approach to create cell-type specific gain-of-function and loss-of-function animal models of IGF-1, which led them to find that the atheroprotective effects of IGF-1 are mediated, at least in part, by the vascular endothelium, but not by smooth muscle cells. In accordance with their observations in animal models, their in vitro approach using cultured vascular endothelial cells revealed that IGF-1 upregulates expression of a major anti-oxidant
enzyme, glutathione peroxidase 1. This effect of IGF-1 protects cells from oxidative damage thereby preventing premature cell senescence, a major cause of endothelial dysfunction. Their findings provide a novel paradigm for IGF-1-induced atheroprotection, by demonstrating the critical role of IGF-1’s effects on the endothelium. They could be the basis for developing therapeutic approaches by manipulating IGF-1’s activity in the vascular wall.

- Sergiy Sukhanov, PhD
 Research Assistant Professor,
 Tulane Heart & Vascular Institute,
 Tulane School of Medicine,
 New Orleans, LA.

On June 6, Dr. Sergiy Sukhanov presented, “GAPDH: New fate of old housekeeping protein.” Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme with an important role in glycolysis and other less well understood roles in a number of fundamental cell pathways including DNA repair and cell death. GAPDH is recognized now as the major cellular sensor ultimately responsible for maintaining of cellular homeostasis. GAPDH is involved in various diseases; however its specific role in atherogenesis is completely unknown. Oxidized low density lipoprotein (OxLDL) is a key pro-atherogenic molecule that promotes atherogenesis via increased oxidative stress, oxidative DNA damage and apoptosis of smooth muscle cells (SMC) and we demonstrated that OxLDL induces ATP depletion in SMC via specific downregulation of GAPDH. We also shown that GAPDH plays a key protective role for cell survival under oxidative stress and our data indicate that interaction of GAPDH and Ape1 endonuclease (a major DNA repair enzyme) potentially mediate this effect. Our data suggest that preservation of GAPDH activity in plaque SMC would be potentially beneficial strategy to treat atherosclerosis.
On June 20, Dr. Ulrich Hopfer presented a seminar titled “Vitamin D and Hypertension: What is the connection?” Dr. Hopfer’s research is focused on the prevalence of both high blood pressure and vitamin D deficiency in the US population. Cross-sectional epidemiological studies show an inverse correlation of vitamin D status and blood pressure, suggesting the possibility that lack of vitamin D contributes to high blood pressure. Definitive evidence for or against this possibility is still missing, but is important to obtain because dietary supplementation is cheap and can eliminate any deficiency. Vitamin D is actually a pre-pro-hormone that in its hormonal form acts predominantly at the cell nucleus to change the expression of hundreds of genes and therewith the functions of cells. The molecular mechanisms for changing gene expression are similar to the ones used by steroid hormones. The classical function of vitamin D is to maintain bone health and regulate calcium and phosphate absorption and excretion and thus to prevent rickets in children or osteomalacia in adults. This function is accomplished by the kidney sensing calcium deficiency and signaling to the gut the need for greater absorption through secretion of the hormonally active form, 1,25-dihydroxy-vitamin D, into blood. Several tissues besides the kidney are able to produce the hormonal active form and locally influence tissue functions without measurable spill-over into serum. This autocrine/paracrine mode of vitamin D includes the differentiation of the immune system, skin, and other types of epithelia as well as control of the renin-angiotensin system and insulin secretion. The serum concentrations of 25-hydroxy-vitamin D, the pro-hormone form, needed for optimal autocrine/paracrine effects are higher than those needed for bone health and thus the definition of vitamin deficiency depends on the specific tissue function of interest. Data will be presented from a cell culture model of collecting duct cells that suggest that the hormonal form of vitamin D can influence the differentiated properties of renal collecting duct cells in terms of greater sensitivity of sodium re-absorption to mineralocorticoid hormones and selectivity for mineralocorticoids rather than glucocorticoids. These data suggest a model in which vitamin D shifts the feedback loop for sodium homeostasis such that systemic renin-angiotensin can be decreased. More animal research will be required to evaluate this concept in vivo and discover useful parameters to assess autocrine/paracrine effects in humans, which are notoriously difficult to discern in clinical trials.
On July 18, 2013 Dr. Vivian Fonseca presented “Cardiovascular Disease in Diabetes – can we get anything to work any more?” Taking into consideration the evidence thus far, it is important to approach glucose lowering in the context of managing overall cardiovascular risk. Generally, HbA1c of less than 7% is thought to be appropriate for patients. However, it ought to be stressed that glycemic goals should be individualized based on duration of DM, pre-existing CVD and other co-morbidities, age and life expectancy. For example, more stringent goals are appropriate for a relatively young patient with no underlying CVD who has been recently diagnosed with DM. On the other hand, less intensive goals should be recommended for elderly patients with long-standing DM who may have established macrovascular disease in whom the risks associated with hypoglycemia could be significant. It is important to keep in mind that intensive glycemic control has consistently been shown to produce a substantial benefit for preventing microvascular complications in both type 1 and 2 diabetes mellitus. The entire effect of intensive glycemic control on macrovascular complications is yet to be clearly understood. Though macrovascular disease is a major cause of death in patients with DM, microvascular complications cause substantial morbidity.
On July 22, 2013 Dr. Edgar Jaimes presented “The transcription factor ETS-1: A common mediator of vascular and renal injury.” Dr Jaimes gave a presentation about the role of the transcription factor ETS-1 in the pathogenesis of vascular and renal injury. Studies from his laboratory have demonstrated that the systemic administration of Angiotensin II in mice increases the glomerular expression of ETS-1 and that blockade of ETS-1 utilizing a specific dominant negative peptide reduces the pro-fibrotic and pro-inflammatory effects of Angiotensin II. In addition, his studies have demonstrated that the hypertensive Dahl salt sensitive rats have increased glomerular expression of ETS-1 and that blockade of ETS-1 reduces the severity of glomerular injury, interstitial fibrosis and inflammation in this model of hypertension. He also presented evidence implicating ETS-1 as mediator of neointima hyperplasia after balloon injury of the carotid artery in rats and in arteriovenous fistulas in mice. Blockade of ETS-1 resulted in significant reductions in neointima formation and in the expression of several mediators of neointima formation including MCP-1, e-selectin, p-selectin and IL-6 in balloon injured arteries and of MCP-1, e-selectin, NOS2, NOX2 and NOX4 in arteriovenous fistulas. In the aggregate the studies presented by Dr. Jaimes highlight the importance of ETS-1 in the pathogenesis of vascular and renal injury of different etiologies and may result in the development of novel therapeutic strategies to ameliorate end-organ injury in hypertension and excessive neointima formation after endovascular injury and arteriovenous fistula creation.
On Thursday, August 1, 2013, Dr. Patrice Delafontaine presented a seminar entitled, “IGF-1 and Atherosclerosis.” Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1-induced reduction in oxidative stress, cell apoptosis, pro-inflammatory signaling and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. Dr. Delafontaine provided a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging.
On August 15, 2013 Dr. Keith C. Ferdinand presented “Sweet and Low: Blood Pressure Effects of New and Emerging Antidiabetic Drugs.” Dr. Ferdinand highlighted the associated cardiovascular (CV) risks of hypertension, especially with type 2 diabetes (T2DM), and addressed the mechanism(s) of action and blood pressure (BP) effects of new and investigational anti-diabetic drugs: sodium glucose co-transporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) agonists. Oral SGLT2 inhibitors are members of the newest anti-diabetic medication class approved, and block the reabsorption of glucose in the kidney, with a favorable fall in BP. In addition, GLP-1 agonists are also recent injectable additions to the anti-diabetic armamentarium.

Dr. Ferdinand is the principal investigator of a recent large, randomized, placebo-controlled, international trial (N=755), with ambulatory blood pressure monitor (ABPM) with an investigational once-weekly GLP-1 receptor agonist, dulaglutide. Dr. Ferdinand presented preliminary data on the long-term effects of dulaglutide (LY2189265), an investigational, novel GLP-1 agonist, as the first large prospective ABPM randomized clinical study. Dulaglutide 1.5 mg shown to significantly reduce mean 24-hour SBP approximately 2 to 3 mm Hg. The potential mechanism(s) of action of these BP effects is not clearly understood nor is the clinical significance of these findings known.
Recent Publications

Book Publications

From May through August, 2013 investigators and physicians affiliated with T.H.R.C.E. participated in many regional, national, & international meetings.

Gulf Coast Physiological Meeting, Mobile, AL; May 31-June 1, 2013

- Singh P, Castillo A, Majid DSA. Hypertensive and renal injury responses to angiotensin II and high salt intake in mice lacking the gene for interleukin-10

Union of Physiological Sciences (IUPS) Congress, Birmingham, England.; July, 2013

- Feng, Y. Recent Advances in Renin-angiotensin System in Health and Disease.
- Singh P, Castillo A, Majid DSA. Regulation of Inflammatory cytokines by nitric oxide in the kidney.

International Academy of Cardiology – 18th World Congress on Heart Disease, in Vancouver, Canada, July 26-29, 2013

- KN Pandey. Interaction of Gene and Salt Diets on Cardiac Angiotensin II, Aldosterone, and Cytokines in Hypertrophied Heart (Plenary Session Speaker).
Invited Lectures

THRCE investigators and physicians were invited to lecture at various national and international events.

El-Dahr, Samir, MD, presented:

Feng, Yumei, MD, PhD, presented:
- “Recent Advances in Renin-angiotensin System in Health and Disease” at IUPS 2013 Congress held in Birmingham, England.

Navar, L Gabriel, PhD, presented:
- “Intrarenal/Intratubular Renin-Angiotensin System in Hypertension and Diabetes,” on July 30, 2013 at the Seminar for Section of Endocrinology, Department of Medicine, Tulane SOM.

Pandey, Kailash N, PhD, presented:
- “Natriuretic Peptides and Receptor in Health and Disease” on June 12 at the symposium honoring Tadashi Inagami, Ph.D., Department of Biochemistry, Vanderbilt University, Medical School, Nashville, TN.
- “Targeted Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Gene Provokes Renal and Cardiac Fibrosis and Remodeling” at the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland on June 18.
- “Emerging Perspectives and Paradigms of the Functional Genomics of Guanylyl Cyclase/Natriuretic Peptides Receptor-A” at the Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India on July 5.
- “Interaction of Gene and Salt Diets on Cardiac Angiotensin II, Aldosterone, and Cytokines in Hypertrophied Heart” on July 27, as the Plenary Session Speaker at the International Academy of Cardiology – 18th World Congress on Heart Disease, in Vancouver, Canada.
- Chairied session on “Molecular Cardiology, Basic Research” at the International Academy of Cardiology- 18th World Congress on Heart Disease. Vancouver, Canada July 26-29, 2013
<table>
<thead>
<tr>
<th>Date</th>
<th>Speaker</th>
<th>Affiliation</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 9, 2013</td>
<td>Tanika Kelly, PhD</td>
<td>Assistant Professor, Department of Epidemiology, Tulane School of Public Health & Tropical Medicine, New Orleans, LA.</td>
<td>“Genomic and Environmental Determinants of Human Hypertension.”</td>
</tr>
<tr>
<td>May 23, 2013</td>
<td>Yusuke Higashi, PhD</td>
<td>Research Assistant Professor, Tulane University Heart & Vascular Institute, Tulane School of Medicine, New Orleans, LA.</td>
<td>“Anti-oxidant effect of Insulin-like growth factor-1 in vascular endothelial cells – a potential mechanism for atheroprotection.”</td>
</tr>
<tr>
<td>June 6, 2013</td>
<td>Sergiy Sukhanov, PhD</td>
<td>Research Assistant Professor, Tulane Heart & Vascular Institute, Tulane School of Medicine, New Orleans, LA.</td>
<td>“GAPDH: New fate of old housekeeping protein.”</td>
</tr>
<tr>
<td>June 20, 2013</td>
<td>Ulrich Hopfer MD, PhD</td>
<td>Professor Emeritus Department of Physiology & Biophysics, Case Western Reserve University School of Medicine Cleveland, OH.</td>
<td>“Vitamin D and Hypertension: What is the connection?”</td>
</tr>
<tr>
<td>July 4, 2013</td>
<td>No Meeting</td>
<td></td>
<td>Independence Day Holiday.</td>
</tr>
<tr>
<td>July 18, 2013</td>
<td>Vivian Fonseca, MD</td>
<td>Professor of Medicine and Pharmacology, Tullis Tulane Alumni Chair in Diabetes, Chief, Section of Endocrinology, Tulane University Health Sciences Center, New Orleans, LA.</td>
<td>“Cardiovascular Disease in Diabetes – can we get anything to work any more?”</td>
</tr>
<tr>
<td>July 22, 2013**</td>
<td>Joint Seminar:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THRCE & Department of Physiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edgar A. Jaimes, MD</td>
<td>Professor of Nephrology, UAB School of Medicine, Birmingham, AL.</td>
<td>“The transcription factor ETS-1: A common mediator of vascular and renal injury.”</td>
</tr>
<tr>
<td>August 1, 2013</td>
<td>Patrice Delafontaine, MD</td>
<td>Sidney W. and Marilyn S. Lassen Professor of Cardiovascular Medicine, Chief, Section of Cardiology, Director, Tulane University Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA.</td>
<td>“IGF-1 and Atherosclerosis.”</td>
</tr>
</tbody>
</table>
Continued...

August 15, 2013

Keith C. Ferdinand, MD
Professor of Clinical Medicine,
Tulane Heart and Vascular Institute,
Tulane University, School of Medicine, NO, LA.
Chair, National Forum for Heart Disease & Stroke Prevention.
“Sweet and Low: Blood Pressure Effects of New and Emerging Antidiabetic Drugs.”

August 29, 2013

No Meeting
Due to the schedule conflict with a Tulane Neuroscience program seminar, this seminar has been rescheduled to December 19, 2013.

September 10, 2013 **

Joint Seminar:
THRCE &
Department of Medicine, Endocrinology

Ovidiu Constantin Baltatu, MD PhD, FAHA
Professor,
Camilo Castelo Branco University,
São Paulo, Brazil
“Renal angiotensinogen as a potential biomarker in diabetic nephropathy.”

September 12, 2013

No Meeting
High Blood Pressure Meeting in New Orleans, LA.
Seminar rescheduled to December 19, 2013.

September 19, 2013

Thomas M. Coffman, MD
Professor of Medicine, Cell Biology, and Immunology,
Department of Medicine; Division of Medicine-Nephrology,
Duke University School of Medicine, Durham, NC,
“AT1 Angiotensin Receptors in Renal Epithelia: Paradoxical Effects in Hypertension.”

September 26, 2013

Paul K. Whelton, MD
Show Chwan Professor of Global Public Health,
Department of Epidemiology,
Tulane University School of Public Health and Tropical Medicine, New Orleans, LA.
“Sodium, BP and CVD: What the data show.”

October 10, 2013

Kailash N. Pandey, PhD
Professor & Vice-Chair of Medical Research,
Department of Physiology,
Tulane University School of Medicine, New Orleans, LA.
“Paradigms of the Sensing and Signaling of Guanylyl Cyclase/Natriuretic Peptide Receptor-A in the Pathogenesis of Blood Pressure and Heart Failure.”

Conferences are held alternative Thursdays at 4:00pm in the Tulane Medical School, Pharmacology Library, Room 4700
** Denotes the seminar date is not our normally scheduled day.
Tulane Hypertension and Renal Center of Excellence (THRCE) houses 4 research core facilities that were developed during COBRE phases I and II and are now maintained and supported by a COBRE Phase III grant awarded by the NIH/NIGMS. These core facilities are essential for the support of basic, clinical, and translational research in hypertension and renal biology and provide unique research opportunities for emerging leaders in hypertension by establishing an enriched environment in which to develop investigators in both the clinical and basic hypertension research. The resources and services provided by the Center’s COBRE Core facilities can be utilized by both COBRE and other investigators within Tulane and other institutions for hypertension, cardiovascular and renal research. The 4 research Core facilities are:

- **The Molecular, Imaging, and Analytical Core**: This facility serves as the resource for instruments and equipment needed to perform advanced molecular biology, semi-quantitative immuno-histochemistry and bio-analytical experiments.
- **Animal and Gene-Targeted Core**: This facility maintains and generates new breeding pairs, does genotyping, and maintains colonies of genetically manipulated mice and rats.
- **Mouse Phenotyping Research Core (MPRC)**: Contains resources to support high-tech data collection capabilities that are unique in the State of Louisiana and essential to research requiring the utilization of an array of methodologies to perform measurements of cardiovascular, blood pressure and renal function in mice.
- **Clinical and Translational Core**: Promotes and facilitates clinical and translational studies in hypertension, kidney disorders, and related cardiovascular diseases.

Other activities of the center include the sponsorship of local and regional meetings on Hypertension and public education programs to increase awareness of the dangers of hypertension. For further information regarding the Core Facilities, please access http://tulane.edu/som/thrce/.