Placement of Spring 1988 Graduates

Tulane graduates of this past spring continue to turn in a highly creditable performance in spite of adverse economic circumstances. At the spring commencement ceremonies, 134 students received bachelor’s degrees. Of these, 22 had neither plans nor offers at the time of graduation. During more normal economic times, the usual unemployment rate is approximately 3 percent at the time of commencement instead of the indicated 15 percent.

Approximately 20 percent of the graduating class took their first jobs in industry, with the computer industry hiring by far the greatest number, followed closely by the combination of the chemical and petroleum industry. Corporations offering employment to the graduates included Exxon, Bell Northern Research, the California Department of Transportation, Ethyl Corporation, James River Corporation, Schlumberger and Union Carbide. More than 80 companies visited the campus; more than 36 made offers to the seniors.

For many years, the vast majority of our graduates received offers primarily from Louisiana and Texas. That trend was reestablished this past spring. After Louisiana and Texas, competing states included California, Florida, Colorado, Connecticut and North Carolina. In addition, two of our graduates were offered employment in Finland and in Germany.

The average starting salary was $30,031. Average offers to Tulane graduates ranged from $500 to $1,500 above the national averages. The highest reported offer was $33,500.

(Continued on page 3)

STE Senior Awards Banquet

TUESDAY, APRIL 25, 1989
Kendall - Cram Room
University Center
Tulane University
Cash Bar 6:00 P.M. Dinner 7:00 P.M.
Cost: $11.00 Each
For Reservations Contact: Shelley Richardson
At Dean’s Office
865-5764

The Society of Tulane Engineers truly appreciates the generous support of its dues paying members. Your donations help meet the financial requirements to provide to all members of the Society a copy of the biannually published newsletter and to fund the Annual Senior Awards Banquet for all graduating engineering seniors. To offset the rising costs for the publications and banquet, the Society of Tulane Engineers Executive Committee was forced to raise the minimum dues to $20.00 per year. As in years past, there are many members who generously donate more than the minimum. This year, the Society is offering a lapel pin for any donation of $30 or more. This pin, as depicted above, is approximately ½” high and beautifully highlighted in blue, olive green and white on a bright gold plate. Please allow 6 to 8 weeks delivery for the pins. The Executive Committee wishes to once again thank you for your financial support and looks forward to your continued support.

Gerard J. Gillen, III
1989 STE President
1988 Outstanding Alumnus Award

George Albert Heft was honored as the 1988 Outstanding Alumnus of the School of Engineering. A native of Ohio, George received his bachelor’s degree in Civil Engineering from Tulane University in 1937 and his master’s degree in 1940. As an undergraduate, he was elected to membership in Tau Beta Pi. Throughout his career, he served in a number of engineering capacities, including Assistant Superintendent of Construction and Maintenance for Shell Petroleum Corporation, Design Engineer for the City of New Orleans for the Union Station project, and as a Partner in a number of consulting firms. Today, he is the principal in G.A. Heft and Company, Consulting Engineers of New Orleans. His career has been distinguished. George has been a Registered Professional Engineer in Civil Engineering in Louisiana since 1937, and in Mechanical and Electrical Engineering since 1951. He has been a Registered Professional Engineer in the State of Alabama since 1945, and possesses a certificate of registration with the National Bureau of Engineering Registrations since 1945. He is also registered in the State of Tennessee. He is a member of the American Society of Civil Engineers, the Louisiana Engineering Society, the American Railway Engineering Association where he possesses a life membership, a member of the American Road Builders Association, and the Construction Industries Association of New Orleans. He is a founding member of the Gulf Institute of Consulting Engineers and has gone through the offices of that organization. He is a member of the Consulting Engineers Council of Louisiana and a founding member of the American Consulting Engineers Council, where he has served as a Director and Chairman of the Fees Committee, also Chairman of the Legal Committee. George has served on the Board of Advisors to the Tulane School of Engineering since 1969.

Some of his engineering projects include the Downman Road underpass, the South Broad overpass, the Elysian Fields overpass, the Paris Avenue underpass, the Gentilly Boulevard underpass, the St. Bernard Avenue underpass, the North Broad underpass, and the Wisner Boulevard overpass. He was a pioneer in the use of prestressed concrete.

He has done work in water purification, sewerage and a number of traffic projects throughout the State of Louisiana.

We extend our congratulations to George Heft for receiving this award.

1988 Harold R. Levey Award

It is the custom to recognize a graduate who received his/her last degree from Tulane University a decade or less ago. This award, the Harold A. Levey Award recognizes outstanding professional achievement by someone in the early stages of his/her career as well as a desire to encourage others to achieve their potential early in their career. The recipient for 1988 was Ray Areaux, Ray registered as a Professional Engineer in 1985. He was also admitted to the Bar in that year having received a Juris Doctorate degree from Loyola. He did this while a full-time employee with Conoco. He was a member of the Loyola Law Review and in 1985 authored the Legal Comment, “Computer Software Protection: From Infancy to Adolescence.” Ray received a Bachelor of Science degree in Electrical Engineering and a Bachelor of Science degree in Computer and Information Systems from Tulane University in 1978. While an undergraduate, he was Chairman of the IEEE student branch, Vice President of Eta Kappa Nu, elected to membership in Tau Beta Pi, recipient of the Argonne National Laboratory Student Fellowship, and a National Merit semi-finalist. While an undergraduate, he motivated the IEEE chapter to compete successfully in the Bendix Award Competition.

Since 1985, he was engaged in the practice of civil law with Milling, Benson, Woodward, Hillyer, Pierson & Miller.

For four years ending in 1985, he was employed by Conoco in the Systems Group of the New Orleans Division, where he was responsible for drafting specifications, testing, installation and start-up of computer based safety systems in the offshore area. Between graduation and 1981 he served with IBM in the Shared Logic Systems Engineering, Architecture Group, where he was promoted from Junior Engineer to Associate Engineer.
Tulane delegation bridges cultures

Casual sightseeing and tourist attractions were not on the itinerary of Bob Bruce's recent trip to China.

"One day the guide said to us, "Today we're going to visit a park," said Tulane's Henry Bob Professor of Civil Engineering. "And I said, 'Oh no, we're not, We're going to see the Yangtze Bridge. Beautiful bridge.' Bruce was the leader of 100 American engineers and executives and their spouses who were members of a concrete construction delegation to China this summer. The 22-day trip was sponsored by Tulane's department of civil engineering and the U.S. State Department-sponsored organization People to People.

Members of the group gave lectures and seminars, held group discussions at four Chinese universities and took field trips to construction, dam and bridge sites in six cities - Beijing, Chongqing, Yichang, Wuhan, Nanjing and Shanghai.

Traveling with the group were 323 Chinese professionals representing all aspects of concrete construction in China. The hosts for the trip were China's minister of communications, Wang Zhan-ji, and the chief executives of the China Road and Bridge Engineering Co., the construction arm of the Chinese government.

Bruce said the trip was another instance of Tulane's ongoing effort to establish ties with the People's Republic of China.

"There are now at least 300 people in China who know the name of Tulane University," he said. "Every time I gave a talk, the Tulane banner was on the podium. Bruce said interest in civil engineering is high in China.

"It's like the whole country is a big construction project," he said. "I stood at the window of my hotel in Beijing and counted construction cranes. When I got to 300, I stopped."

Not surprisingly, demand for civil engineers is high in China, as is the desire to learn about Western engineering techniques, said Bruce.

"We talked about everything - methods, materials, the educational system, highways, dams, bridges, offshore construction, parking garages," he said. "They are so hungry for knowledge."

Bruce said the lectures were so popular that some of the audience traveled 85 miles to attend, and question-and-answer sessions lasted until 11 p.m.

Bruce quickly added, however, that Chinese technology does not lag behind that of U.S. engineers. At least one area, he said, "are definitely ahead of us, and are probably world leaders."

Because of steel shortages, he explained, Chinese engineers started building bridges from fiber-reinforced plastic about five years ago. The bridges, which are large enough for cars to use, are usually built of fiberglass and reinforced with carbon filaments, with no steel beams or girders.

"The U.S. is very interested in this technology," Bruce said. "It's been used here only experimentally. Their strength is not questioned, but we do wonder how they will hold up over a long period of time."

Bruce will present a paper on his observations of the bridges to a government research group in Washington in January.

Another Chinese technological invention Bruce was interested in was the bamboo hardhat.

"Those hardhats are tough and very resilient," he said. "I hit one of the hats with all my might against concrete and it just bounced."

Besides swapping technological information, Bruce said the purpose of the trip was to forge ties with universities to encourage more Chinese graduate students to attend Tulane. He and his delegates gave lectures at the Beijing Institute of Civil Engineering, the Central China University of Science and Technology, the Nanjing Institute of Technology and the Shanghai Institute of Building Science.

-Shana Walton

Placement of Spring 1988 Graduates

(Continued from page 1)

Approximately 30 percent of our graduating class sought postgraduate training in engineering, medicine, law or business. For those seeking advanced degrees in engineering, the leading institutions after Tulane were the University of Florida, Northwestern, the University of Kentucky, and the University of Miami. Also included in the list were the University of London, Princeton, Stanford, and Penn. Future M.D.s are attending not only the Tulane Medical School, but also the Baylor School of Medicine, Case Western Reserve, Louisiana State University, the University of Mississippi, and the University of Puerto Rico. Our graduates also found attractive the law schools at the University of Arkansas, the University of Baltimore as well as Tulane.

Government service continued to draw heavily upon the Tulane graduating class. Approximately 15 percent of our graduates went into government service, primarily because of their ROTC commitments, largely in the NROTC program.

About 10 percent of our student body was undecided at the time of graduation between two or more offers of employment. Many of these were planning to go to work either on the east or the west coast. Their indecision seems to reflect the difficulty of departing from familiar soil. Approximately 10 percent of the students did not respond to our survey, and so we are uncertain as to their future plans.

The job market for new graduates was better than it has been for several years. The number of companies calling on campus has begun to increase and the number of offers is increasing. The salary levels have continued to increase for the last five years, and that increase is still in evidence. It may be that we are entering an expansionary phase of the engineering employment cycle.
Marshall winner plots cartography career

You might say Todd Pierce has his future all mapped out.

Pierce, a native of Metairie, is one of 30 seniors in the United States to win a prestigious Marshall Scholarship for two years of study in Great Britain.

An electrical engineering major, Pierce will shift disciplines to pursue a childhood dream and study geography and cartography. He plans to apply his engineering training to making computer maps while he is enrolled at Oxford University’s School of Geography.

The Marshall Scholarships, awarded annually to outstanding U.S. students, were established in 1953 as an expression of gratitude for America’s role in Europe’s economic recovery after World War II. They are named for Gen. George Marshall, father of the Marshall Plan that spurred the recovery.

Pierce is the 12th Tulane student to win a Marshall since the scholarships were established 35 years ago. The last Tulane winner was Tuhin Roy, a chemical engineering major who won in 1986 to study biotechnology at Cambridge.

“Both intellectually and personally, Todd is very warm and engaging,” said Michael Young, director of Tulane’s Honors Program. “After reading his essay for the Marshall, I think everybody on the committee here thought the same thing. We were sure of his specialness and his independent thought. What came through was Todd’s sense of romance of maps and geography.”

Pierce says his love affair with geography dates to a childhood fascination with maps. He wrote in his essay to the Marshall committee that he was “one of the few boys in high school who asked for and received the National Geographic Atlas for Christmas.”

“I can’t even remember when I first started looking at maps,” Pierce says. “At first the shapes, colors and weird names attracted me. It was a kind of escape. I have all these maps hanging on the walls of my room and I can look at the maps and just lose myself.”

Pierce says he majored in engineering because he loved math and science — and because he didn’t want to be a surveyor, the only obvious career that would incorporate his interest in cartography.

But he says the “embarrassing state of geography awareness” coupled with his own learning about new computer technology applications for mapmaking brought his attention back to maps.

“In recent years, countless reports and surveys have demonstrated that the average American student cannot name the Great Lakes, does not know the nations of Central America, and is not able to find the United States on a world map.” Pierce wrote. “Americans can no longer afford to be ignorant of what lies beyond our borders.”

Pierce points out that maps offer more information than simple coordinates. The map lines dividing Germany or Korea, he says, tell a story. Countries draw maps to express a world view.

“World maps printed in the United States tend to put America right in the center and chop the Asian nations in half on either side,” Pierce says. “Soviet maps are usually north-polar views, meant to suggest Russian dominance of that region.”

In early December, Pierce was eagerly awaiting the new copy of the National Geographic, which will contain the newest official world map. The former official National Geographic map was drawn in 1910.

“The old world map was inaccurate,” Pierce says, “but probably not on purpose. You can’t put a sphere on a plane without distortions. People might not like the new map. The United States is smaller.”

The new map, however, is still on paper. The future of maps, Pierce says, is on computer disks. Pierce will use digital cartography to shape the world. His honors project in engineering is an attempt to segment maps on a computer. “The computer has to be able to tell what’s sea and what’s land and what a road is,” Pierce explains.

Pierce says maps in a computer allow a person to look at a detailed map of, say, Louisiana, and then to zoom in on one area such as New Orleans. Once that portion is enlarged, the viewer can focus on the Central Business District or City Park, progressing to see each street, each vacant lot, and each building — with length, width and number of floors.

“Computerized maps could have overlays too,” Pierce explains. For instance, a person could look at a topographical map of Louisiana, with an overlay indicating each of the cities and towns in geographical precision.

After Oxford, Pierce plans to earn an advanced degree in mathematics and will consider getting a doctorate in geography.

“I might wind up teaching geography here in the States,” Pierce says. “We definitely need to get geography courses back in the high schools. Geography is fascinating, and more people would think so too, if they knew how important it was.”

—Shana Walton
Civil Engineering – Computer-Aided Design Laboratory

The Department of Civil Engineering at Tulane University has implemented a Computer-Aided Design Teaching and Research Laboratory featuring state-of-the-art engineering workstations. Funding for the laboratory was obtained through a grant from the State of Louisiana Board of Regents.

The CECAD Laboratory consists of 12 IBM PS/2 Model 80 microcomputers, three IBM RT PC advanced-function workstations, and an IBM 3812 laser printer, a large print plotter, and an assortment of smaller plotters.

Professor John Niklaus, Department Head of Civil Engineering, has formulated a two-phase plan which will have a major impact on the future curriculum of the department. The equipment will be used for Computer-Aided Design and engineering programs, as well as publishing and office automation applications in order to expose students to all aspects of computer usage.

The second phase of the project addresses the computing needs of graduate students and faculty members involved in research and curriculum software development. The IBM RT PC, a high-performance 32-bit UNIX-based workstation, will provide the foundation for this phase of the project. Computer-Aided Design programs such as, CADAM, GTSRUDL, CATIA, and CAEDS are available for advanced research and development projects.

Professor Niklaus recognized several years ago that the profession was changing; the computer was becoming an indispensable design tool. "We wanted to create an environment in our program that would be similar to the work environment students would find in their professions”, says Niklaus. Civil engineering students are exposed to computer-aided design in their freshman and sophomore years, then move on to more powerful structural analysis and CAD/CAM software packages in their junior and senior courses.

Graduates with computer experience are already finding a better fit in the job market. And those without that experience are beginning to look for ways to re-educate themselves. "We are preparing to launch a major professional development program in this new facility to re-tain older engineers who want additional computer skills to help them in their work", says Niklaus. Additional funding is being sought to create a Center for Computer-Aided Design and place the Tulane Department of Civil Engineering at the leading edge of this important field.

IN MEMORIAM

Dr. Frank W. Macdonald died of cancer on February 21, 1989, at his home in New Orleans. He was 80.

He was Professor of Civil Engineering for thirty years, and former Acting Dean of the School of Engineering, Tulane University. He was also Professor of Public Health and Chairman, Department of Environmental Health, Tulane University School of Public Health. For many years he served as Consultant to the firm of Waldemar S. Nelson and Company, Inc. and other engineering firms in the design of water and sewage treatment plants, drainage districts and other sanitary engineering works.

His research activities were extensive, including investigation of the pollution of the Mississippi River in the vicinity of New Orleans, a study of the drainage system of the City of New Orleans and many more. Among his numerous publications, he authored a manual of Public Health practices in disasters and a textbook of environmental hygiene used in the Medical School and Graduate School of Tulane University.

Under World Health Organization auspices he visited Brazil, Peru, Chile, the Philippines, Thailand and India for consultations and surveys of environmental systems.

He received his B.E. in Civil Engineering at Tulane, his B.S. in Public Health Engineering at Massachusetts Institute of Technology, his M.S. in Civil Engineering at Tulane and a Doctor of Public Health at Tulane University.

Dr. Macdonald served as President, Louisiana Engineering Society; President, Louisiana Section, American Society of Civil Engineers; National Director, National Society of Professional Engineers.

He was a Fellow of the American Society of Civil Engineers and of the American Public Health Association. He was a member of the Louisiana Engineering Society, the National Society of Professional Engineers, the American Water Works Association, Sigma Phi Epsilon, Tau Beta Pi, Delta Omega and the Metairie Country Club.

In Memoriam

CHARLES GRIMWOOD

The faculty and students of the Department of Civil Engineering, and family and friends of Professor Charles Grimwood are saddened by his death on July 1, 1988. Professor Grimwood joined the faculty in January, 1980 following a long and varied career in industry and government, during which he was employed by the General Electric Company, RCA, Chrysler Corporation, the Boeing Company and the U.S. Corps of Engineers. Professor Grimwood served in the U.S. Marine Corps from July, 1948 to July, 1952.

During his tenure at Tulane University Professor Grimwood was noted for his consistently good teaching and excellent research capabilities. We will miss his varied talents and quiet humor.
Commencement 1988

The 1988 Commencement ceremony for the School of Engineering was on Saturday morning, May 14.

David R. Filo, a computer engineering student from Moss Lake, Louisiana, had the highest average in the senior class, a perfect 4.0, and graduated magna cum laude.

Associate Dean Sam Sullivan presented the one hundred forty-one undergraduate candidates for degrees. Associate Dean Raymond Bailey presented fourteen masters candidates and one doctoral candidate for degrees.

Earl E. Bakken, developer of the first practical battery-operated heart pacemaker, was awarded an honorary doctor of science degree. He was also the commencement speaker. Mr. Bakken has received distinction for his pioneering work in the fields of biomedical and electrical engineering. A native of Minneapolis, Earl Bakken received his bachelor's degree in electrical engineering in 1948 from the University of Minnesota. Following his graduation, Mr. Bakken co-founded Medtronic, Incorporated, a medical electronics firm that has become the world's largest manufacturer of heart pacemakers. He served as its chief executive officer and recently became chairman of the board. He has been active in bioengineering research throughout his career and personally financed The Bakken, a library and museum of electricity in life, located in Minneapolis. This library began in 1970 as a small assortment of old medical devices. Since then it has grown to be the finest collection of its kind in the world, containing hundreds of original antique devices and thousands of publications outlining and documenting the history of electricity in medicine and biology.

Candidates for the masters and doctoral degrees in engineering through the Graduate School were invited to participate in the ceremony. Their degrees were awarded during the afternoon commencement program of the Graduate School.

The ROTC graduates were also recognized. Graduates of the Class of 1938 received a 50-year diploma.

Dean and Mrs. Thompson hosted a reception in the Kendall Cram Room of the University Center following the commencement ceremony.

1988 Freshman Class

The freshman class of 1988, while short on numbers (205), was the best qualified class ever enrolled in the School of Engineering. The average combined SAT score was 1241 which places the freshman class in the top 15 in the U.S. The precise rank cannot be determined until the data for all schools are published.

In the freshman class there were thirty-four winners of a Dean's Honor Scholarship. The scholarship is very competitive and covers tuition for the undergraduate degree. The fact that these students could have attended any school in the country and chose Tulane speaks well of the reputation earned by Tulane engineering graduates.

MSU Electric Power Research Laboratory Studies Effects of Environmental Electromagnetic Fields

The Middle South Utilities (MSU) Electric Power Research Laboratory at the Department of Electrical Engineering, has been awarded $70,000 for research during 1989 for Louisiana Power and Light (LP&L) on 60 Hz magnetic fields effects and produced several research proposals. Professors J. Davey, Director of the Laboratory, S. T. Hsieh, P. Rastgoufard, J. W. Bennett (Biology), and William D. Dunlap (Psychology) are working on an interdisciplinary approach to investigate the magnitudes of the environmental magnetic fields and the mechanism of interactions with biological systems, if any.

Letters To The Editor ...

In an effort to make this publication more than a one way communication, a space will be devoted to STE members to voice their opinions, comments or concerns. Any letter relating to Tulane University, the Engineering Department, the Engineering Profession or any STE member will be considered appropriate.

The deadline for the Fall newsletter will be August 1, 1989. Please address your letter to:

School of Engineering
Tulane University
New Orleans, LA 70118

c/o STE Publication Chairman

Sincerely,
Richard Meyer
Publication Chairman
Engineering Students get practice away from school

When Tulane’s newly graduated chemical engineers report for their first day of work, it is never the first time they have been in a chemical plant.

All chemical engineering majors are required to attend “practice schools,” an engineering residency through which students spend their final spring semester working in area plants or with government agencies.

Today, practice schools are fairly common for chemical engineers, but Tulane’s program was begun at the same time the department was founded 50 years ago as the second chemical engineering program in the country, after MIT’s.

Associate professor of chemical engineering Anil Menawat, who was not even born when the program began is responsible for overseeing the practice schools.

“When a young engineer goes to industry armed only with textbook theories, it’s like he’s dressed up for a party but has nowhere to go,” Menawat says. “Here in a university, you cannot train them to know every piece of equipment in industry. Many of our students wouldn’t know a centrifugal pump if it hit them over the head. But in the practice schools, the students are looking at real-life equipment and seeing how it works. This is a bridge from idealism to reality.”

The bridges are company-designed projects for the students at local firms and agencies such as Chevron, Shell, Exxon, Union Carbide, Folgers, the state Department of Environmental Quality and the U.S. Department of Agriculture.

Each fall, companies and agencies submit potential projects for the students. The students, who work in groups of three and four, are free to choose fellow group members and their projects.

“We always have more projects than we can fill,” says Menawat.

The professor points out that chemical engineering is a broad field, ranging from polymers and environmental waste to semiconductors and microcomputer chip technology.

Students have worked on such projects as controlling the moisture in coffee crystals and minimizing a plant’s pollution emission. One year, a student completed a practice school at Tulane Medical Center with an anesthesiologist who was studying blood pressure control. The student was trying to design a model of blood by looking at it as a complex fluid flow.

“Often the projects are some that people at the plants don’t have the slightest idea how they should be solved,” says Farhad Fadakar, a chemical engineering doctoral student who works with the practicesschool students.

Or the projects can be ones the company hasn’t been able to tackle, says Chevron official Ron Scott, who coordinated the two practice-school projects at his company this spring.

Scott says the projects benefit the companies as well as the students. “The practice school allows Chevron to assign young engineers to act as leaders for the students,” he explains. “This helps in the developing of young engineers as future Chevron group and project leaders.”

Graduated senior Clea Madison worked on one of the projects. “Chevron had an organic stream of phenol and hydrcarbons and a small amount of water, maybe 1,000 parts per million,” says Madison. “But the water was enough to kill the catalyst, to block the chemical reaction.”

The team set about trying to find ways to “dry” the stream. Chevron issued identification tags, hard hats and goggles to the students, who visited the plant two or three times a month, read journals and discussed the problem with engineers at Chevron and Tulane.

“I talked to them about each piece of technology, which technologies are practical and which aren’t,” says Menawat. “They must find the technology, size the equipment, lay it out and consider the economics.”

Finally, the students proposed using a molecular sieve. A column of these sieves had pores large enough for water to enter, but too small for the other molecules to pass through. Once they were full of water, they could be drained and reused. The plan cost about $36,000 — $10,000 over what Chevron had budgeted for the project.

The team made a formal presentation to both their Tulane advisers and to Chevron officials. Although the design is a rough outline, Chevron is considering implementing some of the ideas.

“The practice school was really valuable,” says Madison, who works now for Ethyl Corp. in Baton Rouge. “We got the experience of working out in the field before we actually had to start. And the work I did at Chevron was much like what I do now.”

— Shana Walton

SOCIETY OF TULANE ENGINEERS
OFFICERS FOR
1988-1989

President,
Gerard J. Gillen, III
1st Vice-President,
Richard Metcalf
2nd Vice-President
Rene Martinez
Secretary
Kay Erwin
Treasurer
Pierre E. Conner
Assistant Secretary
James Nix
Assistant Treasurer
John B. Hardy, Jr.
Publication Chairman
Richard C. Meyer
Alumni News...

George Elmer May (BE ME '26) received the S.T.E. in 1924. His engineering career began at NOPSI in 1926. He became Assistant Chief Engineer in 1950 and V.P. of Personnel in 1960, retiring in 1968. He is a member of the Tulane Alumni Association Emeritus Club — Board of Governors, 1988.

Mark Isaacs (BE CHE '29) will celebrate his 60th anniversary of commencement and his 80th birthday (June 9th and September 1st) in 1989.

Edward A. McLellan (BE ME '34) retired from Alden Industries, Inc. on September 17th, 1988. “This is my third retirement,” Mr. McLellan reports. “I believe I will just go off from here on.”

Leo E. Broders (BE CHE '38). Mr. Broders reports “The 50th was worth waiting for. It was great to see the class of 1938.”

John F. Manson (BE CE '39) retired at the end of 1985 after 45 years in the construction business. He is currently doing some consulting and construction monitoring with Finnegan/ Manson, Ltd., New Orleans, LA.

William S. Huey (BE '39) is interested in knowing what some of his fellow Tulane Engineers are doing in retirement. Also, when weather permits, Mr. Huey would like to have someone who enjoys fishing “throw a line” and contact him.

Edward J. McNamara (BE CE '39) received the Leo M. Odom Award — Service for the Profession — Louisiana Engineering Society in April of 1988. In May of 1988, he received the Distinguished Service Medal Southern Zone — National Council Engineering Examiners. Mr. McNamara also received the Distinguished Service Award — National Council Engineering Examiners in August of last year.

Irwin C. Weidig (BE EE '40) celebrated the 10th anniversary of his retirement from Kaiser Aluminum and Chemical Corporation on March 31st, 1988. Mr. Weidig served for 16 months, north of Dusseldorf, West Germany, as Staff Engineer during construction of an Aluminum Reduction Plant (1970-71). He is “looking forward to the 50th anniversary of my graduating class of 1940!!!”

R. Frotscher Muller, Jr. (BE ME '47) retired from Kaiser Aluminum in 1983 and has “enjoyed life hunting and fishing on my houseboat and at my camp.”

Richard F. Brunner (BS ME '51) is President of the Board of Advisors of the Tulane School of Engineering.

James J. McCloskey, Jr. (BS EE '53) retired as Vice President of Louisiana Power and Light Co. On July 1st, 1988, he started a new company, JMC Consultants, Inc. Mr. McCloskey had major heart surgery in March of 1988 but is “feeling great!!!”

Robert E. Garcia (BS ME '57) is well into his second career after retirement from USMC following 28 years of active duty.

Clifton N. Francis, Jr. (BS EE '58) retired as Commander of the U.S. Naval Reserve with 34 years of service on October 15th, 1988, in ceremonies at Naval Reserve Center, Orange, Texas. He is a specialist in Naval Intelligence. Commander Francis taught at Sam Houston State University in Huntsville, Texas, the University of Kansas, and Lamar University, where he is presently the Director of Records. He and his wife Martha have three children, Nat, Mary Beth, and Melinda and reside in Silsbee, Texas.

William J. Lannes III (BE EE '59) received the Power Engineering Society (IEEE) Substation Committee Prize Paper for 1988 (co-author). He also received the Ed Frietag Award for Professional Contributions (1988) from the New Orleans Section of IEEE.

De. Edwin P. Russo (BS EE '60, MS ME '62) is a consultant to NAVY/NORDA at Stennis Space Center in the Ocean Engineering Branch.

E. A. Sandy Lowe (BS CE '73) is Vice President of Worldwide Inspection Services based in Scotland. He is now in his 14th year working in Europe since graduation.

Oliver S. Delery, Jr. (BS CE '77) will become Chairman of the Board of the American Concrete Pipe Association in March of 1989. His son, Oliver III, was born on August 24, 1988.

Kitty Howells Brown (BS CHE '78) graduated from Georgetown University Medical School in 1987. She married Michael Brown in March 1988.

John B. Hardey, Jr. (BS CE '80) is a system engineer for IBM in New Orleans. He and his wife Kathy are expecting their first child this summer.

Richard C. Meyer (BS CE '80) is Executive V. P. of RM Development Corp. in Metairie. He and his wife Kathy have four daughters.

C. Craig Anderson (BS ME '82) and his wife Mary live in New Orleans. He is starting his second year at LSU Medical School.

John Meyer (BS CS '82) is technical supervisor of the Telecommunications Planning Support for Department of Defense Automated Information Systems.

Bart J. Geraci (BS CS '84) has received his Master of Arts degree in Computer Science from the University of Texas at Austin. Mr. Geraci has moved back to New Orleans.

George V. Gsell (BS ME '84) received his Master of Science degree from Glasgow University (Scotland) in 1986. He is presently employed by Mechanical Equipment Co., the world’s leading manufacturer of Seamaster desalination equipment, pharmaceutical distillers, and marine heat exchangers.