Wayne Reed joined the Physics Dept. faculty at Tulane in 1985. He has been the Undergraduate Advisor since 1993 and particularly values discussions on educational and career opportunities with his students. He earned his B.S. in Physics at Rensselaer Polytechnic Institute, and M.S. at the University of Washington, Seattle. After working as an R&D scientist in the solar energy industry in Massachusetts he taught for several years in Latin America. Afterwards he joined Texas A&M as a Staff Scientist, helping a physical organic chemistry group develop laser spectroscopic methods. Moving with the Texas A&M group to Clarkson University he finished his Ph.D. in Physics there in 1984.

Reed’s research has concentrated on experimental macromolecular and colloid science, with a particular focus on the fundamental properties of electrically charged polymers, or polyelectrolytes, which include the major biopolymers DNA and proteins, as well as many synthetic polymers. His work, supported for decades by the National Science Foundation and the private sector, has involved development of light scattering and associated methodologies for probing macromolecules, and developing analytical, numerical, and simulation methods for analyzing experiments. An early outgrowth of this was a novel approach to monitoring kinetics and mechanisms in dynamic processes in polymer solutions, such as enzymatic action, phase separation, and the polymerization process itself.

In addition to research publications, grant support, and presentations at international conferences, this work has led to several patents, most of which have been licensed to the private sector by Tulane. Industry has been commercializing Reed’s instruments for over a decade. He has strong collaborations with industry, which garners extensive research support for his Tulane lab, students, and staff. He founded the Tulane Center for Polymer Reaction Monitoring and Characterization (PolyRMC) in 2007, a nonprofit R&D center of the School of Science and Engineering, which is a global leader in its highly focused but widely applicable field.

He co-founded Advanced Polymer Monitoring Technologies, Inc., a Tulane spin-off that is commercializing his patents in Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP) and other areas. APMT seeks to bring a paradigm shift in the trillion dollar per year global polymer manufacturing industry, which supplies materials found in thousands of products such as cars, aircraft, cell phones, medicines, construction materials, and much more. APMT’s commercial embodiments of Reed’s inventions will overcome widespread inefficiency in polymer manufacturing via online monitoring and control, yielding savings of energy and non-renewable resources, more efficient use of plant and personnel time, improved products, creation of good manufacturing jobs, and reduced environmental impact. Via APMT, technical transfer of ACOMP to industrial processes is vigorously underway.

Reed is particularly interested in international collaborations, with an emphasis on Latin America and Europe. He was named Professeur de l’Académie, Institut de France, in 1992; and has fomented US/France academic and industrial exchanges ever since. He has longstanding ties with Brazilian universities and sees extraordinary opportunities for exchanges as Brazil continues to rapidly evolve scientifically, technologically, and socially. His international work has led to lecture-level fluency in Spanish, Portuguese, French, and German. He is currently writing a book on combined Molecular Biophysics and Polymer Physics, and he also enjoys writing fiction, narratives, and philosophy in some of his spare moments, and experimental farming on a nearby homestead.
Meredith “Ace” Mallory, Jr., M.D., 1918-2012

Meredith Mallory, Jr., M.D., was born in Chicago, Illinois, on November 25, 1918. Earning his BA from the University of Illinois-Urbana in 1940 and his MD from Tulane University in 1944, Mallory was a doctor, businessman, scientist, philanthropist and lifelong family man whose love for his alma mater was apparent throughout his life.

“Ace,” as he preferred to be known, began his medical career in the armed forces. After graduating from Tulane he joined the Army, serving first in World War II, after which he joined the radiological safety unit in the Pacific atolls, testing personnel for radiation damage from nuclear testing. During the Korean War, he served in the Army Medical Corps as division surgeon for the 7th Infantry, which fought the noted battles of Pork Chop Hill and Triangle Hill.

Ace retired from the armed forces in 1954, but chose not to enter active medical practice. Rather, he entered the family business in oil and gas development in Louisiana and Texas, and enjoyed a successful career for many years until his retirement. A skilled investor, his tenure as the president of Mallory Investments among other companies enabled his considerable philanthropy, to Tulane and elsewhere. Ace loved travel and the outdoors, and enjoyed fishing, hunting, driving (particularly Mercedes-Benz automobiles) and aeronautics—often flying his own plane around the country to business and personal meetings.

Ace was a member of Chi Psi, Tulane Band, the Tulane Medical Alumni Association, the Dean’s Council of the School of Medicine, the 1834 Society, the President’s Council, and the Paul Tulane Society.

“A basic sciences man” by his own admission, Ace was deeply interested in the foundational principles of scientific fields, from medicine to physics to biochemistry. Not only did he contribute to Tulane medical education throughout his adult life, directly sponsoring Tulane medical students in need, but his legacy is most clearly seen in his establishment in 1990 of an endowed chair at Tulane, named after his late wife, Patricia Ann Murchison. The couple met in 1949 while Ace was stationed at Fort Sam Houston, and they remained married until her death in 1980. He died in San Antonio, Texas, on June 6, 2012.

The holder of the chair is chosen based on scholarly and teaching credentials as well as his or her ability to convey the importance of rigor, discipline, and intellectual integrity in the advancement of science. This focus benefits all students of physical science, including those in engineering, medicine, and other disciplines. The holder of the chair from 1991 until his retirement this past year was James H. McGuire, Emeritus Professor of Physics.

Welcome
Nicholas J. Altiero
Dean, School of Science and Engineering

Presiding
Nicholas J. Altiero
Dean, School of Science and Engineering

Investiture
The Murchison-Mallory Chair in Physics

Nicholas J. Altiero
Dean, School of Science and Engineering

Michael A. Bernstein
Senior Vice President for Academic Affairs and Provost

James Orth
President, School of Science and Engineering Board of Advisors

Acceptance
Wayne F. Reed
Professor, Physics and Engineering Physics

Conclusion
Nicholas J. Altiero
Dean, School of Science and Engineering

You are invited to attend a reception following the ceremony in the Qatar Ballroom