(1) (1 point) True or False: Bendixson’s first name was PeeWee.

(2) Using a Lyapunov function of the form $V = ax^2 + cy^2$, show that the origin is a stable equilibrium point of the system $x' = -x^3 + 2y^3$, $y' = -2xy^2$.

(3) Write down the equation for a spring with linear restoring force, damping (small, subcritical) proportional to velocity. Explain your notation. Rewrite as a 2×2 first-order system. Describe the phase portrait of this system.

(4) Two point masses in the plane move according to the gravitational attraction between them (i.e., inverse-square law; don’t worry about the correct physical constants of proportionality). Formulate as an $n \times n$ first-order system. (What is n?)

(5) Use Lyapunov function of form $c(x^2 + y^2)$ to show that the origin is an asymptotically stable equilibrium point of $x' = y - xf(x^2 + y^2)$, $y' = -x - yf(x^2 + y^2)$, where $f(0) = 0$ and $f > 0$ otherwise. Write down the linearization of this system at the origin. With respect to the linearized system is the origin asymptotically stable?

(6) Let H be a smooth function of two variables. Show that $H(x, y)$ is conserved (not changing with time) under the flow of the system $x' = \partial H/\partial y$, $y' = -\partial H/\partial x$.

(7) State the Poincaré-Bendixson theorem. Use it to show that the system $x' = -2y$, $y' = 3x$ has a cycle about the origin.

(8) Prove: Let A be a 2×2 constant matrix. If the trace of A (the sum of the diagonal elements) is not zero, then the 2×2 system $\mathbf{x}' = A \mathbf{x}$ has no cycles.

(9) True or false (explain). Consider the nonlinear system SYSTEM1: $\mathbf{x}' = g(\mathbf{x})$ with $g(0) = 0$. Let A be the Jacobian matrix of g at 0, and consider the system SYSTEM2: $d\mathbf{y}/dt = A \mathbf{y}$. If the origin is stable with respect to SYSTEM2, then the origin is also stable with respect to SYSTEM1.

(10) Consider $d^2y/dt^2 + p(t)y = q(t)$. Suppose p has a power-series expansion about $t = 0$ with radius of convergence 2 and q has a power-series expansion with radius of convergence 1.

(a) What can you say about the radius of convergence of the power-series expansion of y in powers of t?

(b) What about the series in powers of $t - 3$?

(c) Suppose $y(0) = 1$ and $y'(0) = 3$. Find, in terms of p and q, the coefficient of t^2 in this power-series expansion.

(d) Same question as (a) but now assume $q(t) \equiv 0$.

(11) Find a formula for the phase curves (curves in the phase plane) of the system $x' = -2y$, $y' = 3x$.

(12) Consider the system $\mathbf{x}' = A \mathbf{x}$, where the 3×3 matrix A has a real eigenvalue -2 and a pair of complex conjugate eigenvalues. Prove there exists a solution $\mathbf{x}(t)$ ($t \geq 0$) which traces out a straight line segment in three-dimensional space.

(13) Find general solution to $u'' - u = 2e^{4t}$.

(14) Find general solution to $u'' + u = \sin(\mu t)$, where μ is a constant.

(15) (Continuation: Extra credit) Do the case $\mu = 1$.

1
(16) Find a continuously differentiable particular solution to
\[\frac{d^2 u}{dt^2} + u = \begin{cases} 0 & t < 0 \\ 1 & t \geq 0 \end{cases} \]

(17) Solve \(y' + 2xy = p(x), \ y(0) = 1 \), first for \(p(x) = x \), then for \(p(x) = x^2 \).

(18) Find general solution of \(tdx/dt = x \).

(19) Explain why phase curves of an autonomous \(2 \times 2 \) system can’t cross, whereas those of a nonautonomous system can. Can phase curves of a \(3 \times 3 \) autonomous system cross?

(20) Predator-prey system: \(dx/dt = x - xy, \ dy/dt = -2y + xy \). Find approximate formula for the period of the cycles very near the equilibrium point \((2, 1)\) in the \(x-y \) plane.

(21) (Continuation: Extra credit.) Prove: If \(C \) is a cycle then the line integral
\[\int_{C} \frac{dy}{xy - 2y} \]
is equal to the period of the cycle.

(22) A basin contains 100 gallons of pure water. At time zero, a saline solution (containing 2 grams of salt per gallon) is introduced to the basin at the rate of 5 gallons per minute. The well-mixed solution is pumped out at the same rate. What is the concentration of salt (in grams per gallon) of the solution in the basin \(t \) minutes later?

(23) Find two solutions to \(y' = \sqrt{|y|}, \ y(0) = 0 \). In the general case \(y' = f(y) \), what aspect of \(f \) is related to this failure of uniqueness? Extra credit: Find a 3rd solution.

(24) Write down the Picard iteration for \(dy/dx = xy^2, \ y(0) = 1 \). (Calculate first few iterates.)

(25) (“Time must have a stop.”) Give example of an equation \(dx/dt = f(x) \) for which some solutions are defined for all \(t \) and some are not.

(26) Find by one step of Euler’s method an approximation to \(x(1) \), where \(x' = x - 3y \) and \(y' = x + 2y, \ x(0) = y(0) = 1 \).

(27) Estimate the rate of temperature decay (explain what is meant by ‘rate’) for large time in a heat-conducting rod of length 4, if the temperature satisfies the heat equation \(u_t = 2u_{xx} \), with the boundaries maintained at zero temperature. Are there exceptional solutions with faster decay?

(28) Find first 5 terms of the power series (about \(t = 0 \)) of the solution to \(y'' + \cos(t)y = 1, \ y(0) = 1, y'(0) = 2 \). For what \(t \) does this series converge?

(29) If \(A \) is a real symmetric \(3 \times 3 \) matrix with eigenvalues \(-1, -3, -5\), and \(x(t) \) is a solution to \(dx/dt = Ax \), describe the behavior of \(x(t) \) for large \(t > 0 \).