MATH 1210 FINAL EXAM

TUESDAY, DECEMBER 7, 2010
8:00 AM - 12:00 NOON

Name: _____________________________ Section #: _____
Instructor: __________________________

INSTRUCTIONS:
This exam consists of both short and long answer questions. Short answer questions: No need to show your work. Write your answers in the boxes below. No partial credit. Long answer questions: No work - no credit.
<table>
<thead>
<tr>
<th></th>
<th>1. (a)</th>
<th></th>
<th>4.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(a)</td>
<td></td>
<td>6.</td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(b)</td>
<td></td>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(c)</td>
<td></td>
<td>(e)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(d)</td>
<td></td>
<td>(f)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>(a)</td>
<td></td>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.</td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHORT ANSWER QUESTIONS

1. Compute the limit.

(a) \[\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right) \]

(b) \[\lim_{x \to -\infty} \frac{5x^3 - 7x + 3}{4 - 3x^2 - 2x^3} \]

2. Let \(f(x) = \begin{cases} \sqrt{-x}, & \text{if } x < 0, \\ 3 - x, & \text{if } 0 \leq x < 3, \\ (x - 3)^2, & \text{if } x > 3. \end{cases} \)

Evaluate

(a) \[\lim_{x \to 0^+} f(x) = \]

(b) \[\lim_{x \to 0^-} f(x) = \]

(c) \[\lim_{x \to 0} f(x) = \]

(d) \[\lim_{x \to 3^-} f(x) = \]

(e) \[\lim_{x \to 3^+} f(x) = \]

(f) \[f \text{ is discontinuous at } x = \]
3. Find $\frac{dy}{dx}$ for:

(a) $y = e^{2x} \cos(3x)$

(b) $y = \ln(\ln(\ln(x)))$

4. The equation of the tangent line to the graph of $y = x^2$ at $x = 1$ is:

5. If a snowball melts so that its surface area decreases at the rate of $1\text{cm}^2/\text{min}$, the rate at which the diameter decreases when the diameter is 10 cm is:

Note: Surface area is given by $S = 4\pi r^2$, where r stands for radius.
6. Given the data

\begin{align*}
&f(1) = 5 & f'(1) = 7 \\
g(1) = 3 & g'(1) = 0 \\
g(5) = 2 & g'(5) = 10
\end{align*}

compute the derivatives of each of the following at \(x = 1 \).

(a) \(f(x)g(x) \)

(b) \(\frac{f(x)}{g(x)} \)

(c) \(g^2(x) \)

(d) \(g \circ f(x) \)

7. If \(f''(x) = \sin x + \cos x \), \(f(0) = 3 \), \(f'(0) = 4 \), then \(f(x) \) is given by:

8. Find \(\frac{d}{dx} \int_0^x \frac{e^t}{1+t^2} \, dt \).
9. Let \(f(x) = x^2 + 1 \). Divide the interval \(0 \leq x \leq 2 \) into four equal parts and estimate \(\int_0^2 f(x) \, dx \), correct to four decimal places, using

(a) the method of right end points

(b) the method of midpoints

10. Find the absolute maximum and the absolute minimum values of \(f(x) = 3x^2 - 12x + 5 \) over the interval \(0 \leq x \leq 3 \).
LONG ANSWER QUESTIONS

11. Let \(f(x) = 5x^2 - 3x \). Find \(f'(x) \) using only the limit-definition of the derivative.

12. Use the quotient rule to show \(\frac{d}{dx} \tan x = \sec^2 x \).
13. Find the equation of the tangent line to the curve \(x^2 + 4xy + y^2 = 13 \) at the point (2, 1).

14. At what point on the curve \(y = (\ln(x + 4))^2 \) is the tangent line horizontal?
15. A particle is moving according a law of motion \(s = f(t) = t^3 - 12t^2 + 36t \) for \(t \geq 0 \). (\(t \) is measured in seconds and \(s \) in feet.)

(a) When is the particle at rest?

(b) What is the total distance traveled during the first 8 seconds?

16. Evaluate the limit (provide a justification).

\[
\lim_{x \to 0} \frac{\sin x - x}{x^3}
\]
17. (a) Find the intervals where the function $f(x) = x^3 - 9x^2 + 24x - 1$ is increasing and the intervals where it is decreasing.

(b) Does the function have an inflection point? If so, where?

18. Let f be continuous on $[0, 1]$ and differentiable on $(0, 1)$. If $f(0) = 1$, and $f'(x) \leq 5$ for all x, what is the largest possible value for $f(1)$? *Hint:* Use the Mean Value Theorem.
19. A cylindrical can without a top is made to contain V cm3 of liquid. Find the dimensions that will minimize the cost of the metal to make the can.

Note: Volume of the can = (area of the base) \times height

20. Find the integrals:

(a) \[\int_0^4 (x^2 + |x - 1|) \, dx \]

(b) \[\int x^2 \sin(2x^3 + 1) \, dx \]
21. Sketch the region enclosed by the curves:

\[y = x, \quad y = \frac{1}{x}, \quad x = 4 \]

(Take \(x \geq 0 \).) Find the area of this region.