Calculus II

Name:___________________

Instructor:______________

Final Exam

Spring 2012

Circle your answer below

(1) [a] [b] [c] [d] [e]
(2) [a] [b] [c] [d] [e]
(3) [a] [b] [c] [d] [e]
(4) [a] [b] [c] [d] [e]
(5) [a] [b] [c] [d] [e]
(6) [a] [b] [c] [d] [e]
(7) [a] [b] [c] [d] [e]
(8) [a] [b] [c] [d] [e]
(9) [a] [b] [c] [d] [e]
(10) [a] [b] [c] [d] [e]
(11) [a] [b] [c] [d] [e]
(12) [a] [b] [c] [d] [e]
(13) [a] [b] [c] [d] [e]
(14) [a] [b] [c] [d] [e]
(15) [a] [b] [c] [d] [e]
(16) [a] [b] [c] [d] [e]
(17) [a] [b] [c] [d] [e]
(18) [a] [b] [c] [d] [e]
(19) [a] [b] [c] [d] [e]
(20) [a] [b] [c] [d] [e]
(21) [a] [b] [c] [d] [e]
(22) [a] [b] [c] [d] [e]
(23) [a] [b] [c] [d] [e]
(24) [a] [b] [c] [d] [e]
(25) [a] [b] [c] [d] [e]

Answers correct to 3 significant figure accuracy are to be chosen over “None of the above”
1) If $F(x) = \int_1^{\ln(x)} e^t \, dt$, for $x \geq 1$, then $F'(x) =$

- $[a] \ x$
- $[b] \frac{1}{\ln(x)}$
- $[c] \frac{1}{2\sqrt{\ln(x)}}$
- $[d] \ x\sqrt{\ln(x)}$
- $[e] \ None \ of \ the \ above$

2) Which substitution turns the integral $\int \sqrt{1 + \frac{3}{\sqrt{x}}} \, dx$ into the integral $\int 3\sqrt{u}(u - 1)^2 \, du$?

- $[a] \ u = \frac{3}{\sqrt{x}}$
- $[b] \ u = 1 - \frac{1}{\sqrt{x}}$
- $[c] \ u = x^3$
- $[d] \ u = 1 + \frac{3}{\sqrt{x}}$
- $[e] \ None \ of \ the \ above$

3) The area of the region between the graphs of $f(x) = x^2 - 4x + 10$ and $g(x) = 4x - x^2$ over the interval $[1,3]$ is equal to

- $[a] \ \frac{16}{3}$
- $[b] \ \frac{11}{2}$
- $[c] \ 5$
- $[d] \ \frac{19}{4}$
- $[e] \ None \ of \ the \ above$

4) The volume of the solid generated by revolving the region bounded by the curve $y = x^3$, the y-axis, and the line $y = 3$ about the y-axis is (approximately) equal to

- $[a] \ 10.23$
- $[b] \ 11.76$
- $[c] \ 12.42$
- $[d] \ 13.35$
- $[e] \ None \ of \ the \ above$

5) The volume of the solid generated by revolving the region in the first quadrant that is above the parabola $y = x^2$ and below the parabola $y = 2 - x^2$ about the y-axis is equal to

- $[a] \ \frac{\pi}{2}$
- $[b] \ \frac{\pi}{3}$
- $[c] \ \frac{\pi}{4}$
- $[d] \ \pi$
- $[e] \ None \ of \ the \ above$

6) If the natural length of a spring is 0.2 meter, and if it takes a force of 12 newtons to keep it extended 0.04 meter, then the work done in stretching the spring from its natural length to a length of 0.3 meter (in joules) is equal to

- $[a] \ 1.5$
- $[b] \ 1.6$
- $[c] \ 1.7$
- $[d] \ 1.8$
- $[e] \ None \ of \ the \ above$

7) Suppose that $f(1) = 2$, $f(4) = 7$, $f'(1) = 5$, $f'(4) = 3$, and f'' is continuous. Then $\int_1^4 xf''(x) \, dx =$

- $[a] \ 1$
- $[b] \ 2$
- $[c] \ 3$
- $[d] \ 4$
- $[e] \ None \ of \ the \ above$
8) \(\int (\sin(x))^5 \, dx \) is a sum of terms each having the form \(c \cdot (\cos(x))^n \). The largest power \(n \) occurring in this sum is equal to

[a] 2 [b] 3 [c] 4 [d] 5 [e] None of the above

9) Which substitution should one choose to handle the integral \(\int \frac{\sqrt{x^2-4}}{x} \, dx \)?

[a] \(x = 2\sec(t) \) [b] \(x = 2 \sin t \) [c] \(x = \cos 2t \) [d] \(x = 2 \tan 2t \) [e] None of the above

10) Evaluating the integral \(\int \frac{3x^2-8x+13}{(x+3)(x-1)^2} \, dx \) leads to a function of the form \(4 \ln|x+3| - \ln|x-1| - \frac{A}{x-1} + C \). The correct value for \(A \) is

[a] 1 [b] 2 [c] 3 [d] 4 [e] None of the above

11) Which method has been used to approximate the integral \(\int_a^b f(x) \, dx \), \(f \) being an arbitrary continuous function defined on the interval \([a, b]\), by means of the formula

\[
\frac{b-a}{12} \left[f(a) + 4f \left(a + \frac{b-a}{4} \right) + 2f \left(a + \frac{b-a}{2} \right) + 4f \left(a + \frac{3(b-a)}{4} \right) + f(b) \right]
\]

[a] left endpoint approximation [b] midpoint rule [c] trapezoidal rule
[d] Simpson’s rule [e] None of the above

12) The improper integral \(\int_{-\infty}^{1} xe^{-x^2} \, dx \) converges, and its value is equal to

[a] \(-\frac{2}{e} \) [b] 0 [c] \(-\frac{1}{2e} \) [d] The integral does not converge [e] None of the above

13) The length of the curve \(y = 5 \left(e^{\frac{x}{10}} + e^{-\frac{x}{10}} \right) \), for \(-10 \leq x \leq 10\) is approximately equal to

14) The area of the surface of revolution generated by revolving the curve \(y = \sqrt{x}, 0 \leq x \leq 4 \), about the x-axis is approximately equal to

[a] 36.18 [b] 37.32 [c] 38.15 [d] 39.62 [e] None of the above
15) If \(y \) is a solution of the differential equation \(\frac{dy}{dx} = \frac{x+3x^2}{y^2} \) such that \(y(0) = 6 \), then \(y(1) \) is approximately equal to

[a] 5.76 [b] 6.04 [c] 7.21 [d] 8.12 [e] None of the above

16) Which of the following is an integrating factor for the linear differential equation \(\frac{dy}{dx} + 3x^2y = 6x^2 \)?

[a] \(e^{-x^2} \) [b] \(e^{3x^2} \) [c] \(e^x \) [d] \(e^{-x^2} \) [e] None of the above

17) The differential equation \(\frac{dp}{dt} = 0.08p(1 - \frac{p^2}{1000}) \) is a logistic differential equation with carrying capacity \(M = \)

[a] 1000 [b] 80 [c] 0.00008 [d] This is not a logistic differential equation [e] None of the above

18) The parametric curve given by the equations \(x = t^2 + 1 \) and \(y = t^3 - 4t \) has a horizontal tangent line in case \(t = \)

[a] \(-\frac{2}{\sqrt{3}}\) [b] \(-2\) [c] 2 [d] \(\sqrt{4}\) [e] None of the above

19) The curve with polar equation \(r = 2 \cos \theta \) is a circle centered at

[a] \((-2,0)\) [b] \((1,0)\) [c] \((0,1)\) [d] The curve is not a circle [e] None of the above

20) The sequence \(a_1, a_2, \ldots \) where \(a_n = (1 + \frac{2}{n})^n \) converges, and its limit is equal to

[a] 7 [b] \(\sqrt{50}\) [c] \(e^2\) [d] The sequence does not converge [e] None of the above

21) The series \(\sum_{n=1}^{\infty} \frac{1}{1+n^p} \) converges for \(p = \)

[a] \(e^{-1}\) [b] \(\frac{1}{2}\sqrt{2}\) [c] 0.7 [d] \(\frac{\pi}{3}\) [e] None of the above
22) The series $\sum_{n=0}^{\infty} e^{-n-1}$ converges and its value is equal to

[a] $\frac{1}{e-1}$ [b] $\frac{e}{e-1}$ [c] e^2 [d] The series does not converge [e] None of the above

23) The series $\sum_{n=1}^{\infty} (-1)^n f(n)$ converges in case $f(x) =$

[a] $\frac{2x+3}{x+5}$ [b] \sqrt{x} [c] $\frac{\ln(x)}{x}$ [d] $\frac{\ln(x)}{1+\ln(x)}$ [e] None of the above

24) The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n(x+5)^n}{7n+5}$ is equal to

[a] 5 [b] $\frac{5}{7}$ [c] $\frac{7}{5}$ [d] 7 [e] None of the above

25) Which of the following is a power series representation the function $f(x) = \frac{x^2}{(1-x)^2}$?

[a] $\sum_{n=0}^{\infty} nx^{2n}$ [b] $\sum_{n=0}^{\infty} (n+1)x^{2n}$ [c] $\sum_{n=0}^{\infty} (n+1)x^{n+2}$ [d] $\sum_{n=0}^{\infty} nx^{n+2}$ [e] None of the above