Outline

Fertilization Gametes

Germ Cells Meiosis

Male Reproductive Tract Spermatogenesis

Female Reproductive Tract Oogenesis

Menstrual Cycle Hormones

Fertilization

Gametes – Oocyte, Sperm

Acrosomal reaction

Cell Fusion

Cortical reaction

Completion of Meiosis – 2nd polar body released

Pronuclear fusion

Zygote = fertilized egg

Oocyte

Corona radiata, follicle cells

Zona pellucida, acellular – 3 primary glycoproteins (ZP1, 2, 3)

Cortical Granules – vesicles, hydrolytic enzymes, polysaccharides

Female pronucleus

Sperm Anatomy

Head (nucleus - meiosis completed)
Acrosome

Neck (junction)

Tail (middle piece; end piece) – mitochondria, microtubule system

Sperm – Egg Fusion

```
Sperm swimming penetrates the Corona Radiata
Sperm binding to the zona pellucida – ZP3 is critical
```

Binding induces the Acrosomal Reaction

Membrane fusion

Everts Acrosomal sac - releases hydrolytic enzymes (acrosin is a membrane bound serine protease)

Cell membrane fusion

Prevention of polyspermy

fast block - membrane depolarization

slow block - Ca⁺⁺ mediated cortical granule vesicle fusion with membrane; hydrates perivitelline space, zona pellucida elevates

Metabolic activation of egg - Ca⁺⁺ mediated – increase intracellular pH

Acrosome reaction

Fertilization

Fertilization occurs in the ampulla of the uterus

Gametogenesis

- Spermatogenesis, oogenesis
- Germ cells originate from yolk sac of embryo (parent)
- Migration into genital ridge
- Primary sex cords (compact strands of tissue)
- Mitosis
- Female ovary, sex cords cells → ovarian follicle
- Male testis, sex cord cells → Sertoli cells of the seminiferous tubules
- Sex cord cells are essential for gametogenesis.

Gametogenesis – Germ Cells

From BM Carlson, 1999

Meiosis

- Meiosis occurs during gametogenesis
 1 round of DNA replication → 2 divisions
- $2n \text{ (diploid)} \rightarrow 4n \text{ (diploid)} \rightarrow 2n \text{ (haploid)} \rightarrow 1n \text{ (haploid)}$
- Ploidy = # of each unique chromosome set
- n = number of copies of each unique DNA set
- 46 Chromosomes 22 pairs autosomes, 2 sex chromosomes female is XX male is XY
- Nomenclature: 46,XX or 46,XY
- Recombination occurs during meiosis

Meiosis

Anomalies

Non-Disjunction - Mis-segregation of chromosomes

Aneuploidy = any deviation from $46,\overline{XX}$ or $46,\overline{XY}$

Aneuploidy of entire genome = triploidy, tetraploidy in humans this is rare and lethal

Aneuploidy of single chromosome: hypodiploid (e.g. monosomy) hyperdiploid (e.g. trisomy)

Nondisjunction

Karyotype / Trisomy 21

Down Syndrome 80% maternal

Over 300 Characteristics:

Flat facial features

Protruding tongue

Cardiac defects

Mental deficiencies

From Brookes and Zietman, 1998

Turner's Syndrome

From Brookes and Zietman, 1998

45,XO

Female
Monosomy
1:5000
75% paternal X is missing
Short stature
Ovarian disgenesis
Broad chest

Klinefelter's Syndrome 47,XXY or 48,XXXY

Male

Sterile

Breasts

Testicular atrophy

Male Reproductive Tract

```
Testis (seminiferous tubules) – differentiation
Epididymis – biochemical maturation
Ductus deferens (vas deferens)
Ejaculatory duct and inputs:
      seminal vesicle
      prostate gland
      bulbourethral gland
Urethra - out the penis
Ejaculate – 25 to 250 million sperm
Capacitation - final step of maturation
      acrosome changes induced in the female genital
      tract
```

Male Reproductive Tract

Spermatogenesis

Before puberty: Spermatogonia multiply Puberty → Meiosis Meiosis: equal division Spermatogonia type A – stem cell type B – differentiation Iº spermatocyte - meiosis I

Spermiogenesis Spermatids Spermatozoa

Seminiferous Tubules

Sertoli Cells

Female Reproductive Tract

```
Ovary - Oogenesis
```

Uterine (Fallopian) Tube

Fimbriare (finger like projections of Infundibulum)

Infundibulum

Ampulla – Fertilization

Isthmus

Uterus - endometrium, myometrium, perimetrium

Cervix

Vagina

Female Reproductive Tract

Oogenesis

Oogonia – mitosis to 5th month, 7 million at birth Atresia of oogonia degeneration: Puberty - 40,000; Ovulated - 400 Meiosis - initiated in newborn 1st Block of Meiosis → 1st prophase – called **Primary oocyte** Primary oocyte – Large nucleus → germinal vesicle After Puberty - 1st meiosis completed just prior to ovulation Unequal meiosis \rightarrow secondary ooctye and 1st polar body 2nd block of meiosis is at metaphase of 2nd division Fertilization releases 2nd block

Oogenesis

Age	Follicular histology	Meiotic events in ovum	Chromosomal complement
Fetal	No follicle	Oogonium	2n,2c
period		Mitosis	
Before or at birth	Primordial follicle	Primary oocyte	2n,4c
		Meiosis in progress	
After birth	Primary follicle	Primary oocyte	2n,4c
		Arrested in diplotene stage of first meiotic division	
After puberty	Secondary follicle	Primary oocyte	2n,4c
		First meiotic division	
		completed, start of	
		second meiotic division	
	Tertiary follicle	Secondary oocyte	1n,2c
		Polar body I	
		Ovulation	
	Ovulated	Secondary oocyte	1n,2c
	ovum	Polar body I	
		Arrested at metaphase II	
		Fertilization – second meiotic division completed	
	Fertilized ovum	Fertilized ovum	1n,1c + sperm
	Ovuili	Polar body II	

Follicle

- Follicle cells (from sex cords) surround the Primary oocyte The Follicle is the oocyte plus follicle cells
- Primordial follicle follicle cells partially surround oocyte
- Primary follicle follicle cells form a complete layer
 Follicle cells form gap junctions with the oocyte and produce **Meiotic inhibitory factor**Follicle cells are called granulosa cells
- Granulosa cell layer enclosed by the membrana granulosa, a basement membrane that acts as a barrier to capillaries
- Zona pellucida secreted by oocyte and follicle cells with microvillar connections between the two.
- Ovary cells form 2 more layers theca interna, theca externa

Oogenesis

Age	Follicular histology	Meiotic events in ovum	Chromosomal complement
Fetal	No follicle	Oogonium	2n,2c
period		Mitosis	
Before or at birth	Primordial follicle	Primary oocyte	2n,4c
		Meiosis in progress	
After birth	Primary follicle	Primary oocyte	2n,4c
		Arrested in diplotene stage of first meiotic division	
After puberty	Secondary follicle	Primary oocyte	2n,4c
		First meiotic division	
		completed, start of	
		second meiotic division	
	Tertiary follicle	Secondary oocyte	1n,2c
		Polar body I	
		Ovulation	
	Ovulated	Secondary oocyte	1n,2c
	ovum	Polar body I	
		Arrested at metaphase II	
		Fertilization – second meiotic division completed	
	Fertilized ovum	Fertilized ovum	1n,1c + sperm
	Ovuili	Polar body II	

Follicle Development

- Secondary follicle formation of the antrum (cavity) fluid filled, liquor folliculi
 Hormone production, androgens and estrogen
- **Tertiary or Graffian follicle** 12 hours prior to ovulation. cumulus oophorus = mound of cells that house the secondary oocyte
- Oogenesis controlled by cycles (Menstrual) of hormone release:

 Hypothalamus → gonadotropin releasing hormone (GnRH)

 Anterior pituitary → Gonadotropins, includes luteinizing

 hormone (LH) and Follicle stimulating hormone (FSH)
- Ovulation tertiary follicle protrudes like a blister on the surface of the ovary then bursts in response to LH and FSH
- Corpus Luteum Follicle after ovulation hormone producing Progessterone

Follicle Development

Hormonal Control of Menstrual Cycle

Menstrual Cycle Menstrual Phase

Day 1-5 - Menstrual Phase

Progesterone-dependent (corpus luteum)

Uterus: Low progesterone – constriction of arteries veins Sloughing of the endometrium

Ovaries: Folliculogenesis - 5-12 primordial follicles initiated Primary follicles - squamous to cuboidal cell layer Secretion of zona pellucida

Day 5-14 - Proliferative Phase

Day 13-14 - Ovulation

Day 14-28 - Secretory Phase

Menstrual Cycle Proliferative Phase

Day 5-14 - Proliferative Phase

Estrogen-dependent (produced by granulosa cells)

Uterus: Endometrial stroma thickens (2-3-fold)

Uterine glands elongate

Spiral arteries grow

Epithelial cells become ciliated

Ovaries: Growing follicles - cell proliferation, multilayered

One follicle dominates – antrum formation, fluid uptake

Surrounding cells form theca interna and theca externa

Mature graafian follicle

Membrana granulosa - follicle cells lining antrum

Day 13-14 - Ovulation

Day 14-28 - Secretory Phase

Menstrual Cycle Ovulation

Day 13-14 – Ovulation - Estrogen surge induces LH and FSH surge

Uterus: Proliferative phase continues

Ovaries: Oocyte resumes meiosis

Germinal vesicle breakdown

Metaphase in 20 hours

Unequal division – II^o oocyte and 1st polar body

2nd meiotic block

Cumulus oophorus - detaches and released into antrum

Ovulation: Day 14, follicle becomes vascularized

Bulges from the surface of ovary - stigma - small protrusion

Follicle wall thinning \rightarrow cumulus-oocyte complex released

Ovulated ovum collected by the oviduct

Day 14-28 - Secretory Phase

Menstrual Cycle Secretory Phase

Day 1-5 - Menstrual Phase

Day 5-14 - Proliferative Phase

Day 13-14 - Ovulation

Day 14-28 - Secretory Phase

Progesterone-dependent (corpus luteum)

Uterus: secretory phase - increase vasulature

Spiral arteries and spiral veins

Formation of glandular structures

Uterine epithelium becomes secretory

Ovaries: Corpus luteum forms from ruptured follicle

Produces Progesteron

Corpus luteum degenerates without implantation

Fertilization/Implantation

Day 15 – Fertilization
Unfertilized oocytes die **12-24 hours** after ovulation
Fertilization usually occurs in ampulla

Day 20 - Implantation
Implantation of the fertilized embryo occurs in the uterus

Uterine cells (trophoblast) produce Human Chorionic
Gonadotrophin (hCG)
hCG – maintains the corpus luteum (i.e. progesterone production)

Hormonal Control of Menstrual Cycle

Estrogen

- 17β–estradiol, Steroid, from testosterone
- Testosterone produced by thecal cells of the follicle LH induced
- Testosterone passes to granulosa cell of the follicle
- Granulosa cells express aromatase (enzyme) FSH induced
- Aromatase catalyzed reaction testosterone to 17β–estradiol
- 17β–estradiol released into the circulation, activates nuclear estrogen receptor ligand-dependent transcription factor
- Multiple Influences: Hypothalamus GnRH (gonadotrophin releasing hormone LH surge; Uterus Proliferative phase; Breasts; Body fat; Bone growth

Progesterone

Steroid produced by granulosa lutein cells after ovulation – corpus luteum

Progesterone secretion by corpus luteum for 10 days – without implantation – it undergoes luteolysis – progesterone levels decrease – induces menstrual flow

Maintenance of Progesterone secretion by human chorionic gonadotropin (HCG) produced by the developing placenta

During pregnancy thecal lutein cells also produce progesterone

Progesterone released into the circulation, activates nuclear progesterone receptor – ligand-dependent transcription factor

FSH- Follicle Stimulating Hormone

Glycoprotein, 35 Kd, Released by Anterior Pituitary

- (+) Hypothalamus, GnRH, gonadotropin releasing hormone
- (-) Ovaries (granulosa cells), Inhibin (32 Kd), cirulation

Females: → production of estrogen by follicle cells

Menstrual Cycle:

days 5-14 – proliferative phase, estrogen: follicle development day 14 – ovulation – FSH surge

Males: → production of Androgen binding protein by Sertoli cells

LH – Luteinizing Hormone

- Glycoprotein, 28 Kd, Released by Anterior Pituitary
- (+) Hypothalamus, GnRH, gonadotropin releasing hormone
- (-) Ovaries (granulosa cells), Inhibin (32 Kd), cirulation
- Females: → production of progesterone by follicle cells

Menstrual Cycle:

- day 14 LH surge induces ovulation and transforms the graafian follicle into the corpus luteum
- days 14-28 Secretory phase, LH required for progesterone production
- Males: → Induces enzymes required for testosterone synthesis in Leydig cells

Hormones Influence Spermatogenesis

Hypothalamus **GnRH Anterior Pituitary** Leydig Cells Testosterone Serotoli Cells

Sperm Transport

From Seeley, Stephens and Tate, 1989

Birth Control Methods

Rhythm

Barriers – condoms, diaphragm, cervical cap

Pill (estrogen/progestin) – inhibits ovulation

IUD (intrauterine device) – mechanical interference

RU-486 – progesterone antagonist – induces menses

Sterilization – vasectomy / fallopian tube ligation

From Seeley, Stephens and Tate, 1989

In Vitro Fertilization

