Developmental Disorders

General Principles

Causes:

Genetic

Environmental (Maternal, Physical, Chemical)

Mechanisms (Retinoic Acid)

General Principles

- Teratology "Study of Monsters"

 Teratogen agent that produces birth defects
- 2-3% of all newborns show at least one recognizable congenital malformation
- 4-6% after a few years due to unrecognizable malformations at birth
- Over 20% of infant mortality is linked to congenital malformations

Congenital Malformations

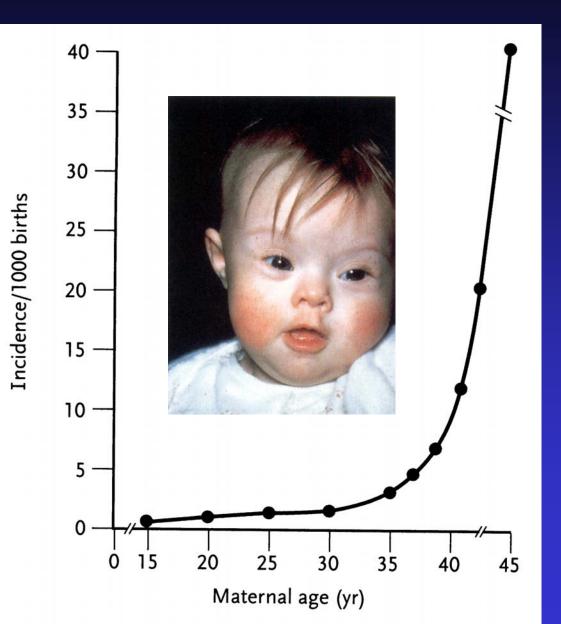
Range – Enzyme deficiency (point mutation) to gross anatomical malformations

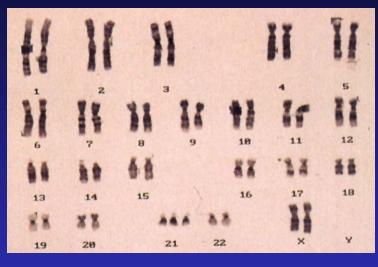
Interaction between genetic make-up and the environment

Penetrance – severity of a defect – influenced by genetic background: Different mice strains react differently to a specific teratogen.

Factors:

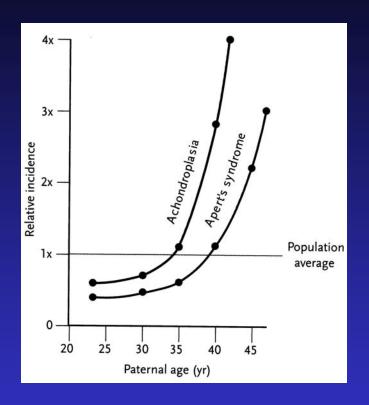
Parental Age


Race


Country of Residence

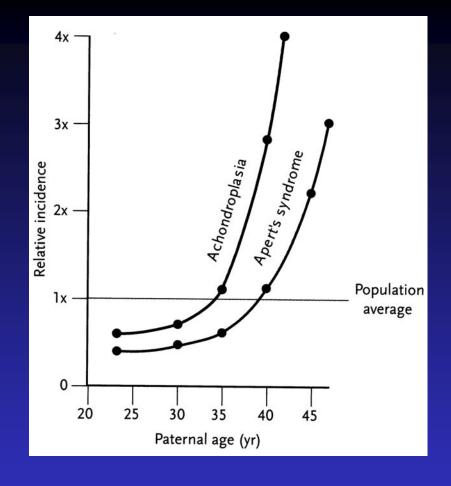
Time of the year

Familial Tendencies


Maternal Age

Paternal Age

Apert's syndrome (Acrocephalosyndactyly)


Premature suture closure \rightarrow Abnormal head shape

Webbed fingers and toes

Mutation: Chromosome 10

FGFR2 gene (Fibroblast Growth Factor Receptor 2)

Achondroplasia (Short-limbed dwarfism)

Normal trunk – Short arms and legs

Disproportionately large head

Mutation: Chromosome 4

FGFR3 gene (Fibroblast Growth Factor Receptor 3)

Race/Country of Residence

TABLE 7-1 Incidence of N	leural Tube Defects		
Site	Incidence*		
India	0.6		
Ireland	10		
United States	1		
Worldwide	2.6		
*Per 1000 live births			

Neural Tube defects correlate with Maternal Folic Acid (vitamin B complex) deficiency

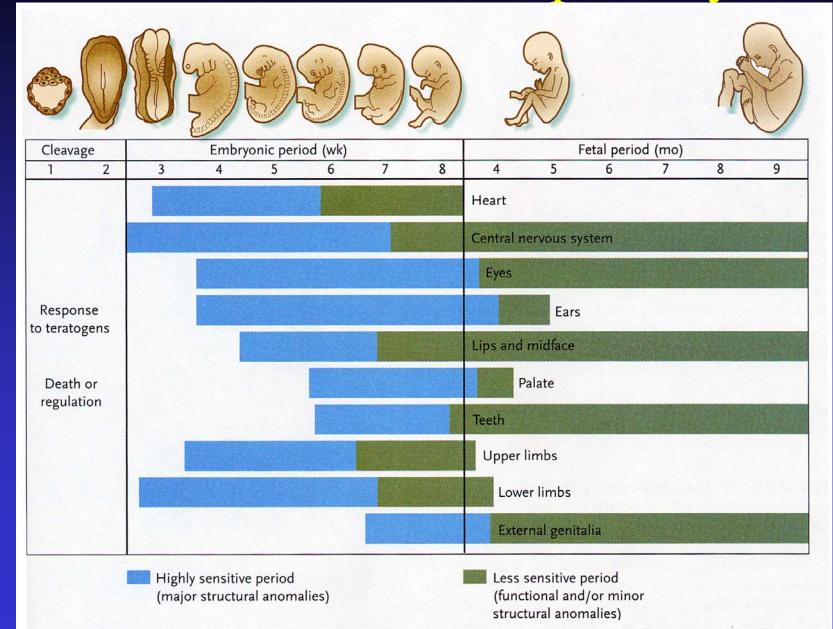
Possible Cause: Poor nutrition

BIRTH DEFECTS INFANT MORTALITY RATES, BY STATE, FOUR-YEAR AVERAGES, U.S., 1988-1991

State	Rate	RR	95% CI	Rank
Alabama	242.4	1.22	(1.13–1.32)	49
Alaska	189.3	0.95	(0.77-1.18)	15
Arizona	227.1	1.14	(1.06-1.24)	45
Arkansas	211.4	1.07	(0.95-1.19)	38
California	190.4	0.96	(0.93-0.99)	17
Colorado	199.1	1.00	(0.91-1.10)	23
Connecticut	160.0	0.81	(0.72-0.90)	4
Delaware	232.5	1.17	(0.96-1.42)	47
District of Columbia	180.6	0.91	(0.73-1.13)	9
Florida	194.4	0.98	(0.93-1.03)	21
Georgia	209.0	1.06	(0.99-1.13)	35
Hawaii	153.5	0.77	(0.65-0.92)	1
Idaho	218.9	1.10	(0.94-1.30)	39
Illinois	208.6	1.05	(1.00-1.11)	33
Indiana	209.8	1.06	(0.98-1.14)	36
lowa	221.8	1.12	(1.01-1.24)	40
Kansas	200.1	1.01	(0.90-1.13)	26
Kentucky	242.5	1.22	(1.12-1.33)	50
Louisiana	226.1	1.14	(1.05-1.23)	43
Maine	186.2	0.93	(0.79-1.11)	11
Maryland	171.0	0.86	(0.79-0.94)	6
Massachusetts	153.9	0.78	(0.71-0.84)	2
Michigan	190.8	0.96	(0.91-1.02)	18

Minnesota	200.1	7	1.01	(0.93-1.10)	25
Mississippi	222.8		1.12	(1.02-1.24)	41
Missouri	208.1		1.05	(0.97-1.13)	32
Montana	225.8		1.14	(0.94-1.38)	42
Nebraska	207.2		1.04	(0.91-1.20)	29
Nevada	169.9		0.86	(0.72-1.01)	5
New Hampshire	189.6		0.96	(0.81-1.15)	16
New Jersey	179.6		0.91	(0.85-0.97)	7
New Mexico	240.9		1.21	(1.08–1.37)	48
New York	183.9		0.93	(0.89-0.97)	10
North Carolina	207.8		1.05	(0.98-1.12)	31
North Dakota	251.3		1.27	(1.04-1.55)	51
Ohio	199.2		1.00	(0.95-1.06)	24
Oklahoma	192.4		0.97	(0.87-1.07)	19
Oregon	179.9		0.91	(0.81-1.02)	8
Pennsylvania	195.8		0.99	(0.93-1.04)	22
Rhode Island	188.4		0.81	(0.67-0.98)	13
South Carolina	227.0		1.14	(1.05-1.25)	44
South Dakota	205.8		1.04	(0.84-1.27)	28
Tennessee	194.3		0.98	(0.90-1.06)	20
Texas	208.8		1.05	(1.01-1.10)	34
Utah	211.2		1.06	(0.95-1.19)	37
Vermont	158.3		0.80	(0.61-1.05)	3
Virginia	188.8	4	0.95	(0.88-1.02)	14
Washington	188.1		0.95	(0.87-1.03)	12
West Virginia	229.0		1.15	(1.01-1.32)	46
Wisconsin	207.4		1.05	(0.96–1.13)	30
Wyoming	205.4		1.04	(0.80-1.34)	27
United States	198.4				

Time of Year


Anencephaly – High incidence of January births – Late winter / Early Spring conceptions

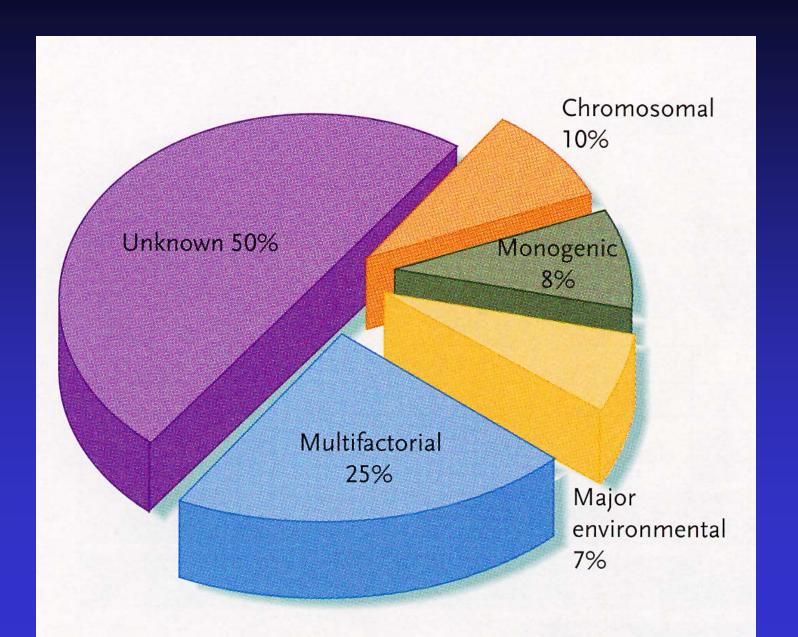
Maternal Folic Acid deficiency

Related to nutritional deficits during winter

Windows of Susceptibility

Developmental Disorders

General Principles


Causes:

Genetic

Environmental (Maternal, Physical, Chemical)

Mechanisms (Retinoic Acid)

Causes

Genetic - Chromosomal

Sex chromosome complement	Incidence	Phenotype	Clinical factors
хо	1:3000	Immature female	Turner syndrome: short stature, webbed neck, high and arched palate
XX		Female	Normal
XY		Male	Normal
XXY	1:1000	Male	Klinefelter syndrome: small testes, infertility, often tallness with long limbs
XYY	1:1000	Male	Tall, normal appearance; reputed difficulty with impulsive behavior
XXX	1:1000	Female	Normal appearance, mental retardation (up to one third of cases), fertility (in many cases)

Polypoidy

Monosomy

Trisomy 8, 9, 13, 18, 21

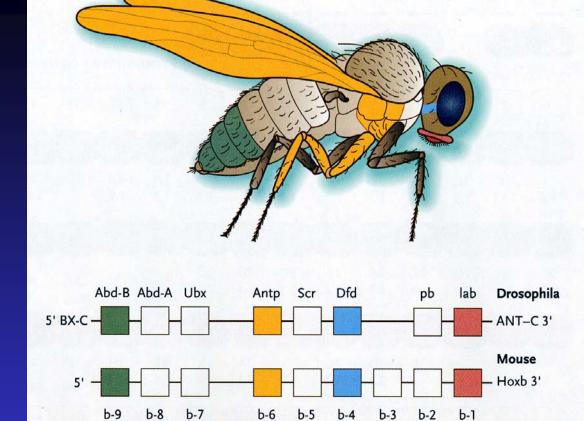
Abnormal Structure – deletions, duplications, translocations, etc.

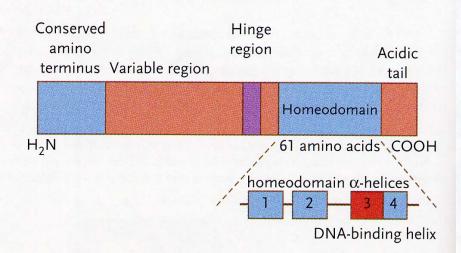
Partial Trisomy 13

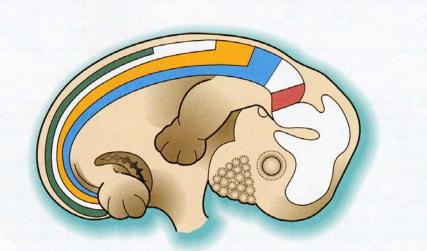
Mutations

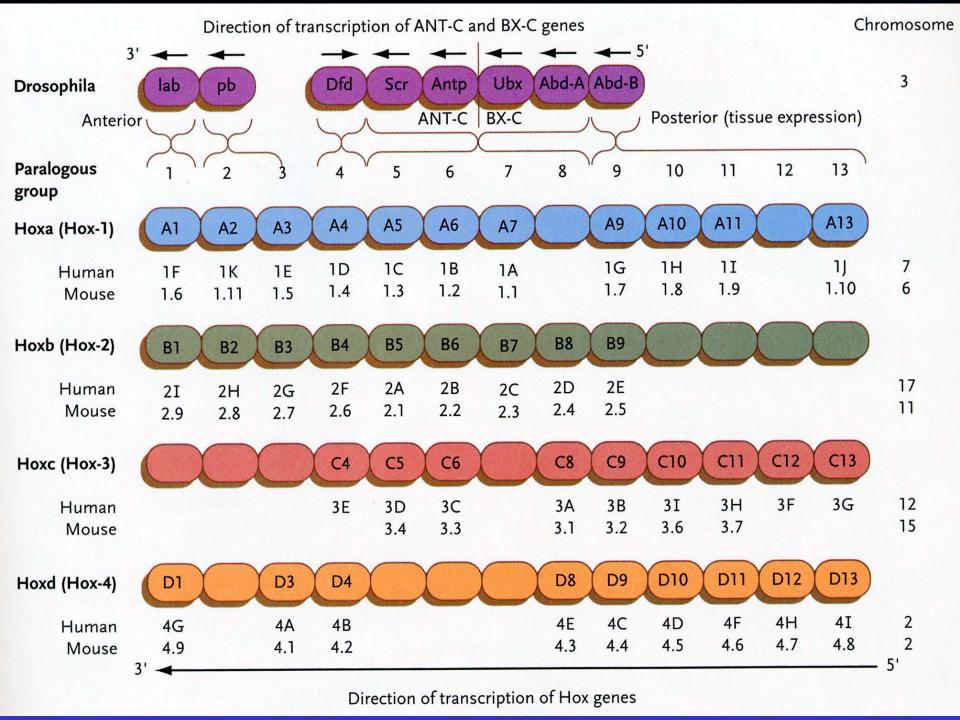
- Most genetic mutations are known based on morphological abnormalites Specific gene is unknown
- Recent advances in molecular genetics have uncovered the molecular basis for some disorders.
- Many morphological abnormalities involve mutations of transcription factors or cell-cell signals
- One example is Synpolydactyly caused by a mutation in the HOXD13 gene.

Synpolydactyly / HOXD13




Digit fusions


Supernumerary carpals


Transformation of metacarpal to carpals

Homeobox Genes

Hoxd9 Hoxd10 Hoxd11 Hoxd12 Hoxd13

Synpolydactyly / HOXD13

Digit fusions

Supernumerary carpals

Transformation of metacarpal to carpals

Developmental Disorders

General Principles

Causes:

Genetic

Environmental (Maternal, Physical, Chemical)

Mechanisms (Retinoic Acid)

Environmental Causes

Maternal Infections

Infectious agent	Disease	Congenital defects
VIRUSES		
Rubella virus	German measles	Cataracts, deafness, cardiovascular defects, fetal growth retardation
Cytomegalovirus	Cytomegalic inclusion disease	Microcephaly, microphthalmia, cerebral calcification, intrauterine growth retardation
SPIROCHETES		
Treponema pallidum (syphilis)	Syphilis	Dental anomalies, deafness, mental retardation, skin and bone lesions, meningitis
PROTOZOA		
Toxoplasma gondii	Toxoplasmosis	Microcephaly, hydrocephaly, cerebral calcification, microph- thalmia, mental retardation, prematurity

Physical Causes (ABS)

Chemical Causes

Agent Alcohol Androgens Anticoagulants (warfarin, dicumarol) Antithyroid drugs (e.g., propylthiouracil, iodide) Chemotherapeutic agents (methotrexate, aminopterin) Diethylstilbestrol Lithium Organic mercury Phenytoin (Dilantin) Isotretinoin (Accutane) Streptomycin Tetracycline Thalidomide Trimethadione and paramethadione

Valproic acid

Effects

Growth and mental retardation, microcephaly, various malformations of face and trunk Masculinization of females, accelerated genital development in males

Skeletal abnormalities; broad hands with short fingers; nasal hypoplasia; anomalies of eye, neck, central nervous system

Fetal goiter, hypothyroidism

Variety of major anomalies throughout body

Cervical and uterine abnormalities

Heart anomalies

Mental retardation, cerebral atrophy, spasticity, blindness

Mental retardation, poor growth, microcephaly, dysmorphic face, hypoplasia of digits and nails

Craniofacial defects, cleft palate, ear and eye deformities, nervous system defects

Hearing loss, auditory nerve damage

Hypoplasia and staining of tooth enamel, staining of bones

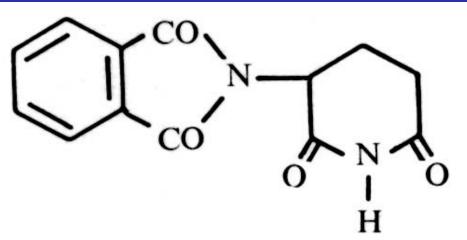
Limb defects, ear defects, cardiovascular anormalies

Cleft lip and palate, microcephaly, eye defects, cardiac defects, mental retardation

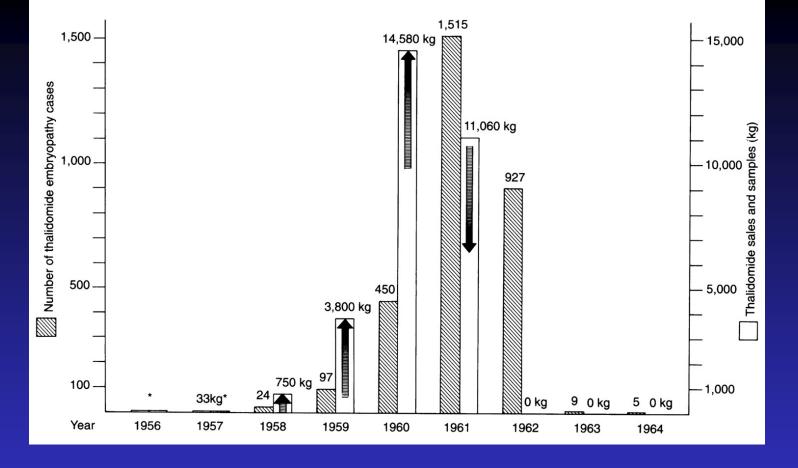
Neural tube defects

Fetal Alcohol Syndrome

- Growth deficiency
- Low IQ (average = 63)
- Mild to moderate microcephaly
- Short nose, smooth philtrum, thin upper lip
- Heart murmur
- Small distal phalanges



1954 – Chemists synthesize thalidomide – trying to produce a new anti-histomine – instead they discover that it is an effective sedative


1956 – Free samples to workers at the manufacturing plant – a baby without ears

1957 – Marketed by Chemie Grunenthal in Germany – as a wonder drug – no side effects. It was prescribed to women to combat morning sickness associated with pregnancy

Thalidomide has no effect on rodent embryos (standard testing).

Thalidomide was sold over the counter in some countries, it was immediately popular and taken like aspirin

Babies born with severe limb defects began to increase.

Spatial correlation of defects – spreading from Germany to regions of high use

1961 (December) – First published correlation between Thalidomide and birth defects – based on 3 babies

1962 (Summer) – Thalidomide taken off the market

12,000 Thalidomide babies born / 8,000 Thalidomide babies survived

Many are alive today – they are in their late 30's and early 40's

Spectrum of malformations (besides limbs): Absence of ears, deafness,
Defects of eye and facial muscles, Malformations of heart, bowel,
uterus, gallbladder

2-Week sensitive period - 35 days to 49 days

1965 – Thalidomide is found to be a significant treatment for Leprosy patients that develop severe skin lesions assoicated with an inflammatory reaction (erythema nodosum leprosum, ENL) – Thalidomide is the treatment of choice

Brazil begins manufacturing Thalidomide for use with leprosy treatment.

Brazil now has a new generation of Thalidomide children.

1980's – Thalidomide is shown to be a effective in treating other diseases involving ulceration or lesions, including HIV-related symptoms.

1990's – A black market for Thalidomide emerges in the US

Thalidomide is in clinical trials as an antiangiogenesis agent for the treatment of Cancer

1998 – FDA approves Thalidomide for treatment of ENL

Thalidomide

IMPORTANT PATIENT INFORMATION

Thalidomide may be the most infamous drug in recent history. In the late 1950's, thalidomide was marketed in Europe as a sleeping pill and used to alleviate morning sickness during pregnancy. Tragically, however, its use by preanant women resulted in the birth of thousands of deformed babies. In 1961, scientists discovered that the medication stunted the growth of fetal arms and legs. In fact, taking only one dose of thalidomide early in pregnancy can severely affect the growth of fetal limbs (arms, legs, hands, feet). It also outs the fetus at risk of other injuries, including eye and ear defects; and severe internal defects of the heart, genitals, kidneys, digestive tract (including lips and mouth), and nervous system.

Thalidomide is not approved for use in the United States. However, the Food and Drug Administration allows restricted

Today – Thalidomide's mechanism of action in embryopathy or in clinical treatment is unknown

Developmental Disorders

General Principles

Causes:

Genetic

Environmental (Maternal, Physical, Chemical)

Mechanisms (Retinoic Acid)

Mechanisms – Retinoic Acid

Vitamin A – Retinol and its derivatives are called Retinoids
They are essential for the embryo and the adult
Too little – abortions
Too much - malformations

Retinoic Acid is a Teratogen and also a Morphogen for the vertebrate embryo

Retinoic Acid is used widely for treatment of skin disorders, and some Cancers.

Tradename: Accutane

Vitamin A and Human Teratology

Recommended Daily Intake (RDI) – 5,000 IU

Morphological Defects are reported at >10,000 IU (controversial) and 25,000 IU (generally accepted)

Defects: Cranial neural crest cell migration, axial patterning.

Accutane (isotretinoin) = 13-cis-RA; used to treat severe cystic acne Therapeutic doses -0.5-1.5 mg/kg.

Defects during 1st trimester: spontaneous abortion and severe malformations

Etretinate (synthetic retinoid) – used to treat psoriasis,

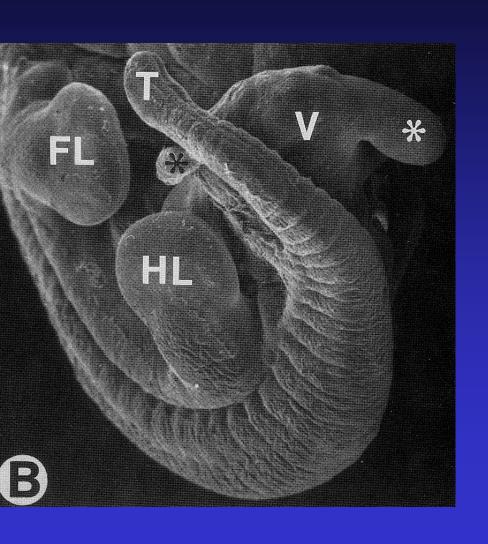
Defects: spontaneous abortion, severe malformations

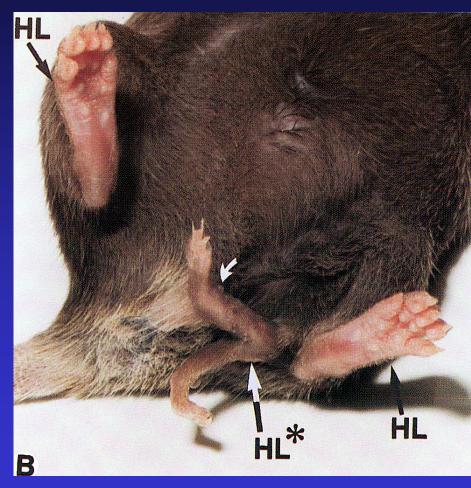
One case of an infant conceived 1 yr after termination of treatment – stored in maternal adipose tissue

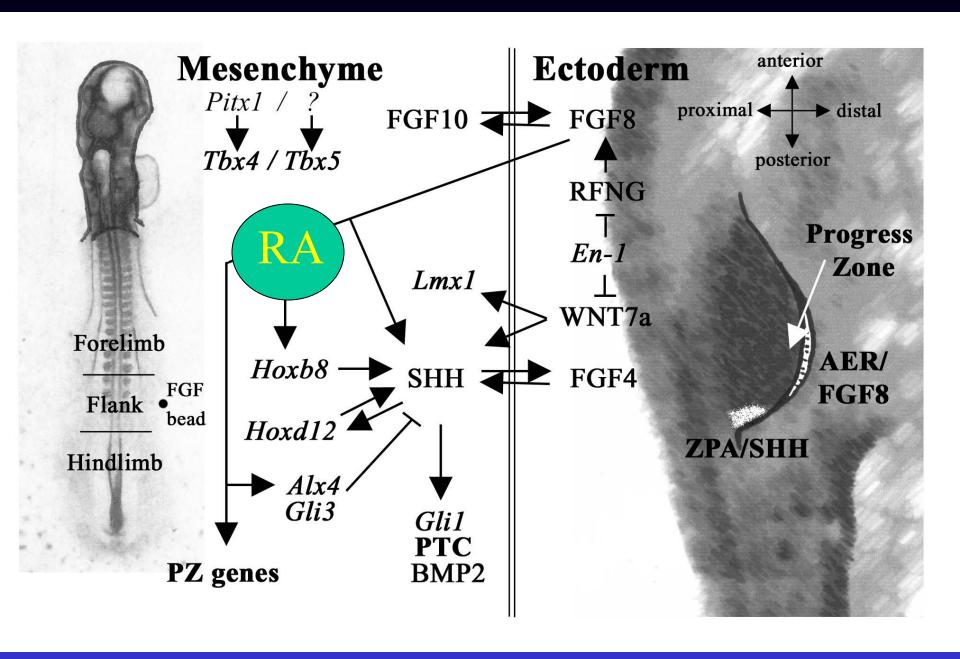
Accutane

13-cis-retinoic acid

Licensed in 1982; Recognized as human teratogen in 1983


Hydrocephalus – problems with cortical and cerebellar cell migration (IQ ~70)


Craniofacial – facial assymetry, ear defects

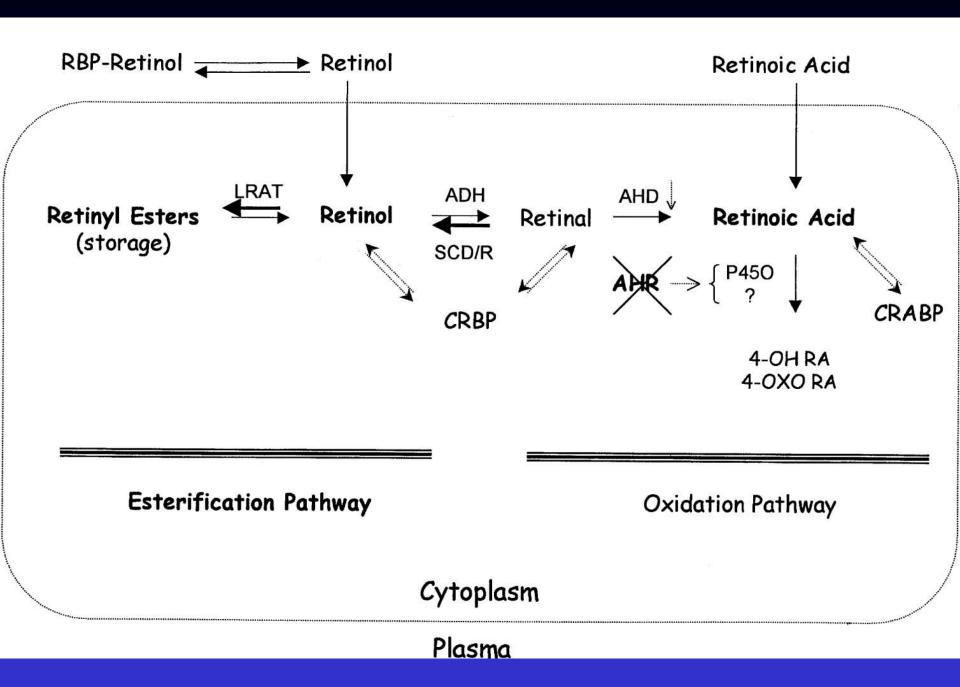

Heart defects

RA Induces Extra Limbs

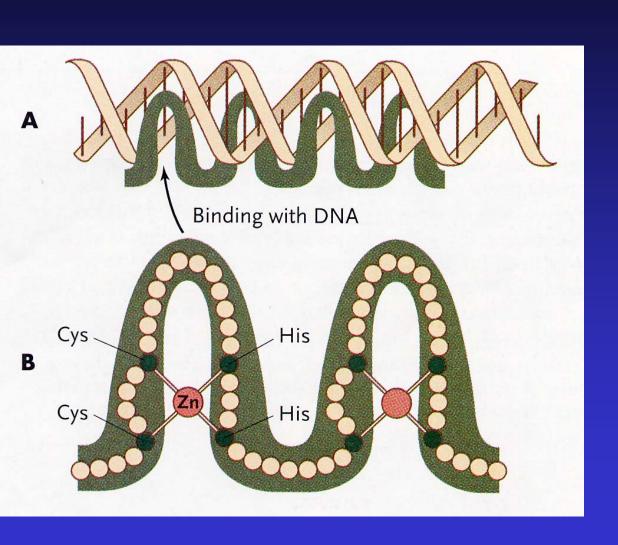
0H

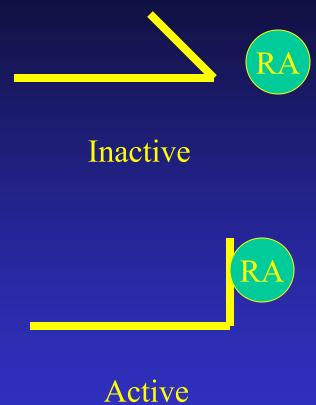
ALL-TRANS-4-HYDROXYRETINOL

ALL-TRANS-4-HYDROXYRETINOIC ACID

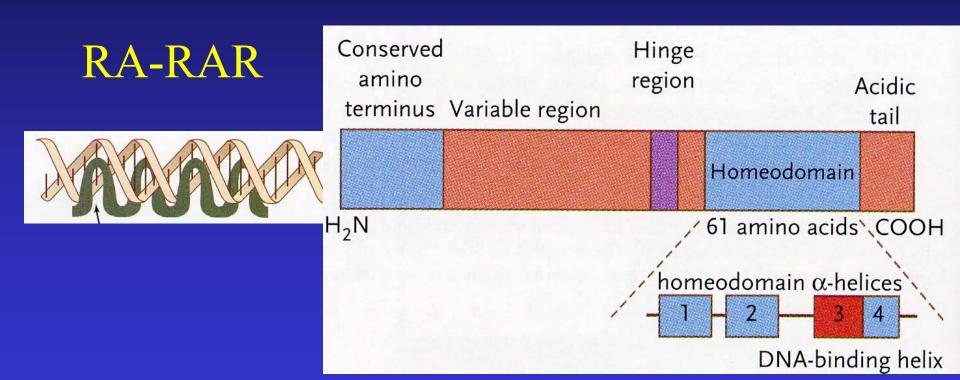

ОН

ALL-TRANS-4-OXORETINOIC ACID

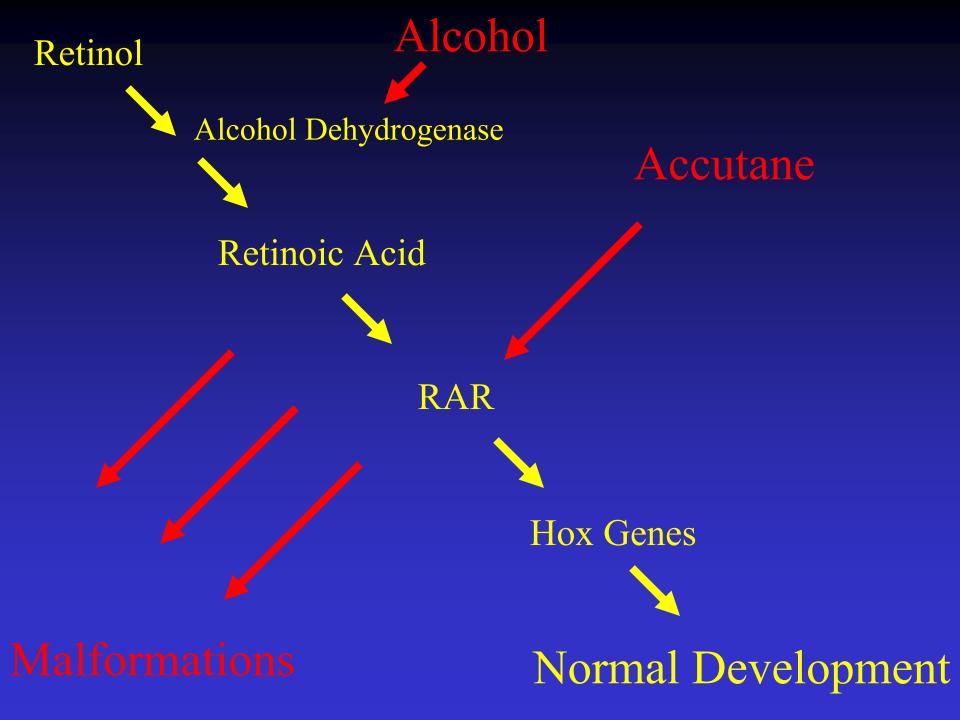

14-HYDROXYL-4, 14-RETRORETINOL


3,4-DIDEHYDRORETINOIC ACID

9-CIS RETINOIC ACID



Retinoic Acid Receptor



RA Controls Some Hox Genes

HOX Genes

