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Abstract The most comprehensive data sets documenting hydraulic and sediment transport regimes in
the lower reaches of alluvial rivers come from systems that are managed to prevent flow loss from the
channel into the overbank environment. Even moderate losses can have significant impacts on in‐channel
velocity and sediment transport; therefore, a full understanding of flow loss and its effects is an important
prerequisite to insights into channel function and to designing effective management strategies. We use
the term flow loss for losses of water that are locally small relative to the main channel discharge. We present
a unique data set documenting discharge, channel geometry, and water surface elevation from three
distributary channel networks in the Mississippi River Delta where flow loss is widespread. We apply our
data to validate a 1‐D hydraulic model, which then drives a previously validated model of sediment
transport. Results from the modeling effort demonstrate that velocity and sediment transport trends are
substantially modulated by flow loss in the ranges observed in distributary networks. The effect of flow loss
on distributary channels established, we then examine how flood control infrastructure may have impacted
the morphological evolution of the lowermost reaches of a large alluvial river like the Mississippi. The
expected outcome of preventing flow loss is erosion in the channel's lowermost reach, in agreement with
observational data. Finally, we develop a theoretical metric for a stable channel, and show that flow loss is a
potentially important and understudied contributor to the long‐term behavior of distributary channels.

1. Introduction

An influential body of literature documents hydraulic geometry gradients in the lower reaches of rivers
where channel long profiles adjust to meet receiving basins near shorelines (Lamb et al., 2012;
Lane, 1957; Wright & Parker, 2005a). The region of adjustment, often called the backwater reach, is charac-
terized by sediment transport rates that vary systematically with along‐stream distance, making it a hot spot
of morphological activity (Jerolmack & Swenson, 2007; Nittrouer, Shaw, et al., 2012; Nittrouer et al., 2011;
Wright & Parker, 2005b). In the Lower Mississippi River, where discharge records, bathymetric surveys,
and sediment sampling are particularly robust, Nittrouer, Shaw, et al. (2012) demonstrate that the stream-
wise trend in hydraulic geometry changes with flow discharge, suggesting the possibility of a complex
response in the bed. At flood, river stage increases upstream but is held nearly constant at the shoreline
by base level, leading to a streamwise decrease in cross sectional area, and thus an increase in velocity
and potential bed scour with streamwise distance toward the shoreline. At low flow the trend is reversed:
Low stage upstream causes cross sectional area to increase with distance downstream, and the resulting
streamwise decrease in velocity causes a decrease in sediment transport capacity, and thus potential
deposition. In this framework the bed morphology of the modern Lower Mississippi River is to a large extent
set by the balance between these two competing states: Toward the shoreline, scour during floods outpaces
deposition during lowwater, but further upstream the riverbed aggrades as flood scour is insufficient to flush
sediments that have settled throughout the year. (Nittrouer, Shaw, et al., 2012).

This body of work presents a coherent picture of the regional‐scale hydraulics that drive sediment transport
in the modern Lower Mississippi River, a channel that is confined by an engineered flood protection system,
and which loses very little flow throughout most of its backwater reach except at specific, controlled loca-
tions (Allison et al., 2012, 2013). But flow loss is ubiquitous in unmanaged fluvial systems, so the confine-
ment of the Lower Mississippi River channel by levees complicates the task of applying the lessons
learned to other locations with different management schemes or to the stratigraphic record. The same
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geometric constraint that causes erosion toward the shoreline during floods could also be satisfied by losses
that reduce the volume of water that flows through the channel.

The widely used term “bankfull flow” implies a frequency of overbanking events that points to their impor-
tance, and researchers interested in overbank dynamics have for decades studied flow paths exiting main
channels as important conduits for riverborne water and sediments (Day et al., 2008; Musner et al., 2014;
Rowland & Dietrich, 2005; Shen et al., 2015; Slingerland & Smith, 2004; Smith et al., 1989). Likewise, sub-
stantial effort has been devoted to studying the in‐channel effects of individual large offtakes for channel
maintenance and navigation, as well as for wetlands restoration and sediment management (Allison
et al., 2013; Meselhe et al., 2016; Nittrouer, Best, et al., 2012; Wang & Xu, 2018). But there is evidence that
unmanaged fluvial and deltaic channels lose flow over a large number of relatively small extractions. For
example, Lewin et al. (2016) document a wide variety of mechanisms for “spillage” to occur along a
1700 km reach of the Solimões‐Amazon River and show that for some subreaches spillage sedimentation
contributes more to the floodplain than channel accretion processes. Shen et al. (2015, in their supplemen-
tary Figure DR2) examined a 55 km reach of Bayou Lafourche, which was once a major distributary of the
Mississippi River and found that 85% of the bank length was occupied by crevasse splays. These splays varied
in size and alternated in their periods of activity, but their widespread presence shows that flow losses were
an important feature of the channel. Additionally, a series of recent studies have demonstrated that flow con-
ditions in delta distributaries are closely connected to exchanges between the channels and the overbank
environment (Hiatt & Passalacqua, 2015, 2017; Passalacqua, 2017; Shaw et al., 2016). The fraction of flow
lost from the channel is an important control on the water surface elevation profile in the channels of the
Wax Lake Delta (Hiatt & Passalacqua, 2017), an observation that we confirm for the Birdsfoot Delta and find
has geomorphic significance for the channels.

We also know from experimental studies that the broad patterns of aggradation and erosion observed
throughout the backwater reach, as suggested by Nittrouer, Shaw, et al. (2012), can be replicated in unma-
naged channels (Ganti et al., 2016), and there is evidence from the stratigraphic record that these patterns
are present across a wide range of river scales (Fernandes et al., 2016; Martin et al., 2018). Further, there
is evidence from studies in the unmanaged channels of the Wax Lake Delta that incision into underlying
substrate does not require artificial flow confinement to occur (Shaw et al., 2013). But the specific role that
flow loss plays in the geomorphic evolution of deltaic distributary channels, and how anthropogenic channel
modifications might change this, is not yet clear.

In the current study we use the term “flow loss” to refer only to losses of water that are locally small com-
pared to the discharge in the main channel. This may be due to regions of shallow spillage to the overbank,
or to regularly spaced cuts or small crevasses. In general, the emphasis is on the cumulative effect
along‐channel of numerous small losses. Bifurcation and avulsion are separate processes from the flow loss
considered here, though both may be initiated at locations where flow loss is present. Throughout, we refer
to flow loss along a reach as a fraction of the incoming discharge at the upstream boundary that fails to reach
the downstream boundary.

Using this framework we investigate the hydraulic response of channels in the backwater reach to flow loss
by collecting linked measurements of channel geometry, water level, and flow discharge in terminal distri-
butary channels that lose flow along their length. We use our field data to validate a 1‐D hydraulic model for
a channel in the backwater reach that exchanges flow with its overbank environment. The hydraulic model
is then used to drive a sediment transport model, and the results are used to examine how flow loss affects
the distribution of sediment transport capacity along a channel. Finally, we apply the lessons learned in the
terminal distributary channels to theMississippi River trunk channel and examine the extent to which chan-
nel bed scour can replace the effects of flow loss in managed channels where loss is prevented.

2. Materials and Methods
2.1. Field Setting

Our field data come from the channel networks of three subdeltas in the Mississippi River's Birdsfoot Delta
(Figures 1 and 2). Cubit's Gap, the largest of the three, formed in 1862, 5 km above Head of Passes on the East
Bank (Welder, 1959). Baptiste Collette, 19 km above Head of Passes (hereafter RK 19) on the East Bank, is
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present as an inconsequential bayou on maps as early as the 1880s (Mississippi River Commission, 1885) but
did not begin to expand until near the turn of the last century. Its entrance was closed with sheet piles from
1908 to 1915, and has remained open since the barricade was undermined in 1915 (Dent, 1921). The Jump,
nearly opposite Baptiste Collette on the West Bank, at RK 17 was formed by a crevasse in 1839.

Baptiste Collette (BC) and Cubit's Gap (CG) each have one channel that is larger than the others, while the
two distributaries of The Jump (GT, whose primary components are Grand Pass and Tiger Pass) are nearly
equal in size and discharge (Figure 3). We present data from two channels in each network and refer to the
Mississippi River as the “trunk channel” from which all three subdelta networks emanate. Flow is lost along
all subdelta channels by overbanking and through small cuts in the levees. The cuts, some of which are nat-
ural and some of which are not, are typically on the order of 0.5 m deep (Boyer et al., 1997), and oriented
nearly perpendicular to the main channel axis. The stage variation between low‐ and high‐flow conditions
at the nearby Venice gauge is also approximately 1 m, meaning that many of these cuts are inactive at low
flow (see supporting information). Such cuts have been present throughout the history of the channel net-
works, though manmade features are more abundant now than prior to the middle of the twentieth century
(The Coast And Geodetic Survey, 1906; U.S. Department of Commerce, 1965). Reliable data documenting
the discharge and flow conditions are not available from the initial stages of development for any of the cre-
vasses, but historical navigation charts show that the channel patterns in place today, including the relative

Figure 1. Study site locations in regional context, with locations in the lowermost Mississippi River that are referred to in the text marked. The three channel
networks shown in detail in Figure 2 are outlined by solid black lines. The inset area is outlined by a dotted line. Inset shows Land area growth of Baptiste
Collette and Cubit's Gap subdeltas on the Mississippi River's East Bank. Internally ponded areas are not considered. Historical maps were downloaded from
NOAA's Historical Chart and Map Collection (http://www.nauticalcharts.noaa.gov/csdl/ctp/abstract.htm) and were digitized and georeferenced using QGIS.

10.1029/2019WR026463Water Resources Research

ESPOSITO ET AL. 3 of 18

http://www.nauticalcharts.noaa.gov/csdl/ctp/abstract.htm


Figure 2. Maps of field data collection showing GPS points, ADCP transect locations, and ADCP transect data. The map locations are shown in regional context
relative to the Mississippi River's trunk channel in Figure 1. Note that the horizontal and vertical scales of the ADCP transects are consistent for each channel,
but not between channels. Many channels have nearly vertical banks that are supported of dense stands of vegetation (phragmites sp.), which results in
some bed elevation traces appearing to end abruptly. The ADCP transect at lower left of the figure serves as a key. The inlet and outlet transects used in the
numerical model validation (Figure 5), are outlined by thick gray boxes. Aerial imagery was downloaded from Louisiana's online GIS repository, Atlas. BC:
Baptiste Collette, CG: Cubit's Gap, GT: The Jump, and HOP: Head of Passes.
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widths of the channels, have persisted throughout the life span of each subdelta (≤150 years) (Figure 1). In
Cubit's Gap, where the early survey data is particularly good, we can see that the locations of the channels
were permanently established within 15 years of the initial levee breach in 1862.

Our primary observational data set consists of water surface elevations collected with a survey grade GPS
system linked to flow and channel geometry data collected with a boat mounted Acoustic Doppler
Current Profiler (ADCP). The average depth among the four ADCP beams was used to define each channel
cross section. Detailed survey procedures for GPS and ADCP data are described in sections 2.3 and 2.4,
respectively. Surveys were performed from 31 March through 3 April 2015, during which time the discharge
in the Mississippi River measured at Belle Chasse (RK 120) ranged from 27,000 to 31,000 m3 s−1 The max-
imum discharge allowed to pass Belle Chasse is 34,000 m3 s−1, with excess flow diverted upstream at the
Bonnet Carre Spillway (RK 205). Losses at Fort St. Philip (RK 31) remove approximately 7% of the discharge
that passes Belle Chasse (Allison et al., 2012). ADCP and GPS data were always collected in the same chan-
nel network on a given day, and whenever possible were collected in a given channel concurrently. The spa-
tial distribution of ADCP and GPS data can be seen in Figure 2, and collected ADCP data are shown in
Table 1. The deployment was timed to neap tides so that downstream water level fluctuations did not signif-
icantly influence our results. Baptiste Collette was surveyed on 31 March, and then a repeat survey was

Figure 3. Field data from channel networks. Colors correspond to the colors of channels shown in Figure 2. All elevations are displayed in NAVD88. Baptiste
Collette was surveyed on 31 March (tide range ~6 cm), and again on 3 April (tide range <2 cm) with only very small changes in the measured hydraulic
properties. Data from both surveys are included here. The top row shows the water surface elevation and thalweg elevation. Note the change in vertical scale
at −1 m. All subsequent rows show data that were derived from ADCP measurements. Note that area is displayed normalized by the inlet area. The CG2 channel
has two inlets. Data from both inlets are plotted here separately. Combined values are shown in Table 1.
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performed on 3 April. Data collected on both days is shown in Figure 3 in order to show consistency in our
measurements. The passes of The Jump and Cubit's Gap were surveyed on 1 and 2 April, respectively.

2.2. Anthropogenic Modifications

The passes studied here and the local trunk channel have all beenmodified or maintained to varying degrees
in order to facilitate navigation. A comprehensive treatment of the modifications since 1960 is given by
Sharp et al. (2013) and summarized below. While the fundamental physical relationships that we use to
model flow and sediment transport are independent of these modifications, it is important to note the con-
text. One potentially impactful use of this study would be to improve channel management decisions in the
Mississippi and other heavily managed rivers. To that end, including heavily modified systems in our theo-
retical understanding is an important goal.

The Mississippi River trunk channel was deepened in 1987 to include a 13.7 m deep, 229 m wide navigation
channel, and regular maintenance dredging is required to maintain this channel downstream of Venice.
Additionally, the West Bay Sediment Diversion was completed in 2003 at RK 7.5 opposite Cubit's Gap.
Opening West Bay induced a loss of sediment transport capacity in the trunk channel that contributed to
increased dredge activity beginning in 2006. The banks on both sides of the trunk channel are stabilized with
revetments, which prevents widespread overbank flow and maintains the entrance widths and positions of
the passes studied here. Baptiste Collette's main pass (BC1) and Grand Pass (GT1) were both dredged in
1978–1979, and flow‐constricting jetties were installed at the end of BC1. A sill, consisting of a woven willow
mat weighted with rocks, was installed in Cubit's Gap in 1908 (Welder, 1959) and may still be limiting the
entrance depths of CG1 and the north fork of CG2.

2.3. Water Surface Elevation

We surveyed water surface elevation along the bank of each channel with a Trimble R8 GNSS Survey
System, using RTK correctors from GulfNet at LSU's Center for Geoinformatics. When collecting measure-
ments the GPS was mounted on a 2 m pole and used to determine the bed elevation near the channel banks,
which were only accessible by boat. We then measured the water depth on the pole and combined the two
numbers to get water surface elevation. Where the bank was not accessible by boat, we used pilings to sta-
bilize the GPS. Measurements were collected when the GPS was stable for 3 s. When the GPS could not
be held stable, we used the average of three instantaneous measurements. Measurements in Baptiste
Collette and The Jump were collected approximately 500 m apart, while measurements in Cubit's Gap were
collected at 1,000 m intervals. The water surface slope in each channel was estimated with a linear fit to
the data.

2.4. Flow Parameters

We collected flow parameters and hydraulic geometry with a Teledyne RDI 600 kHz RiverRay Acoustic
Doppler Current Profiler (ADCP) mounted toward the stern of the R/V Mudlump to collect channel

Table 1
Summary Data From Each Channel

Path
Inlet Qw
(m3 s−1)

Outlet Qw
(m3 s−1)

Percentage of
discharge lost

Mean inlet
velocity (m/s)

Mean outlet
velocity (m/s)

Inlet area
(m2)

Outlet
area (m2)

Water
surface slope Bed slope

BC1 (31 March) 1,643 1115 32% 1.43 1.68 1146 665 −6.03 × 10−5 3.7 × 10−4

BC1 (3 April) 1,862 1239 33% 1.61 1.69 1157 733 −6.03 × 10−5 3.7 × 10−4

BC2 (31 March) 190 212 −11% 1.02 1.06 197 207 −7.30 × 10−5 6.0 × 10−5

BC2 (3 April) 229 261 −14% 1.08 1.12 213 234 −7.30 × 10−5 6.0 × 10−5

BC3 (31 March) 524 93 82% 1.07 0.92 488 100 −7.29 × 10−5 5.2 × 10−4

BC3 (3 April) 563 109 81% 1.14 0.99 494 110 −7.29 × 10−5 5.2 × 10−4

CG1 (2April) 2,021 901 55% 1.29 0.93 1570 966 −3.49 × 10−5 6.9 × 10−5

CG2 (2 April) 1,078 85 92% 1.14 0.72 922 118 −4.66 × 10−5 1.8 × 10−4

GT1 (1 April) 813 141 83% 0.53 0.57 1508 245 −4.73 × 10−5 6.1 × 10−4

GT2 (1 April) 1,033 177 83% 0.97 0.40 1070 438 −4.34 × 10−5 6.5 × 10−4

Note. All columns are derived fromADCP data exceptWater Surface Slope, which is derived fromGPS data, and Bed Slope, which we calculate using both ADCP
and GPS data. Inlet area and discharge are summed across the north and south forks of CG2, and the velocity is averaged.

10.1029/2019WR026463Water Resources Research

ESPOSITO ET AL. 6 of 18



velocity cross sections, discharge, and geometry data. ADCP transects
were collected at approximately 3,000 m intervals along channel, and
downstream of every major bifurcation. Within each cross section, hori-
zontal resolution was approximately 1–2 m, depending on the boat speed.
Vertical resolution varied by water depth but ranged from 20 cm in the
shallowest channels to 80 cm in the deepest. Cross sectional data were
post processed using WinRiver II to calculate discharge, velocity, and
channel cross sectional area. Discharge and area were calculated to
include the channel edges as calculated by WinRiver II, using transect
endpoint‐to‐shoreline distances estimated in the field. Mean velocity
was calculated by dividing the measured discharge by the measured cross
sectional area at each transect. Velocity percentiles were calculated after
resampling the measured velocities onto a regular grid (0.5 m horizontal
by 0.2 m vertical). We calculated Froude Number using mean velocity
and median transect depth. The ADCP profiles were also used to provide
channel bathymetry transects. Each ADCP transect profile was latched to
our estimated linear water surface elevation profile in order to calculate
the channel bed elevations shown in (Figure 3). Flow measurements
extended to the end of the subaerial channels. We use the method of
(Engelund & Hansen, 1967) to estimate rates of sediment discharge per
unit channel width (see equation (5), in Modeling section) given a mean
bed grain size of 150 μm, which is a typical value observed from grab sam-
pling in the Baptiste Collette channels.

Due to limited time available in a given field day we chose to collect a sin-
gle transect at each ADCP sampling location so that measurements could
be collected throughout the entirety of each channel network in a single
day. Because our analysis is more dependent on the streamwise trend of
discharge than on the absolute magnitude at any location, we chose to
accept fewer measurements at a given location in exchange for broad geo-
graphic coverage. This approach is frequently employed in synoptic sur-
veys that target flow distribution in coastal systems (e.g., Li, 2013).
Huang (2015) analyzed a set of 22 ADCP data sets collected with a variety
of ADCP models, in rivers and irrigation canals that vary in discharge by
four orders of magnitude. In each data set the measured the ratio of the
maximum residual (RMR) of discharge for the first two transects. RMR
is defined as the maximum difference between an individual measure-
ment from a set and themean of the set, scaled by themean. He found that
the RMR in discharge for four transects at a given location was less typi-

cally than 5%. To demonstrate that our discharge survey results are reproducible, the ADCP survey at
Baptiste Collette was repeated on 3 April. The comparison of the two Baptiste Collette surveys (Figure 4)
shows that the survey results, including the magnitude of the discharge as well as the trends in a given chan-
nel, are reproducible. An error on the scale of those observed by Huang (2015) would be an order of magni-
tude lower than the observed and repeated streamwise trends in discharge for BC1 and BC3 and would
therefore not affect the trends that we observed nor our conclusions.

2.5. Model Description

To model individual channels with flow loss in the backwater reach, we use a 1‐Dmodel of gradually varied
flow. The model simulates instantaneous conditions in a channel but does not address the interaction of
channels in a network or their evolution.We use a hydraulic model introduced by Cui and Parker (2005) that
is derived from the Saint Venant equation to include a friction term to account for the lateral flow losses. The
mathematical framework we use is that of continuous flow loss along a channel reach. The derivation begins
at the Saint Venant Equations with all time derivatives removed under the assumption of steady flow and is
shown in full in the supplemental information. The resulting form of the backwater equation that we use is

Figure 4. Discharge from the three channels of Baptiste Collette, collected
at the same locations on 31 March and 3 April 2015. More water is flowing
at all locations during the 3 April survey, and the trends in discharge
along each channel are consistent between days. This validates the ADCP
survey results for the goals of this paper.
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1 − F2
� � ∂H

∂x
¼ F2 H

B
∂B
∂x

þ S0 − Sf − Sl; (1)

where x is the streamwise coordinate, R is the hydraulic radius, and n is Manning's n. H(x) is the local flow
depth, g ¼ 9:8m

s2 is the acceleration due to gravity, qwl is the width‐averaged lateral flow input, and A, the

channel cross sectional area, is the product of channel width, B(x), and H(x). S0 is the bed slope, Sf ¼ n2

u2

R
4=3

is the friction slope with u as the mean channel velocity, and Sl ¼ 2Qwqwl
gA2 is an additional friction term

that accounts for loss of streamwise momentum due to mass removal due to lateral flow loss. The Froude

number is in the form F ¼ Qw

ffiffi
B

pffiffiffiffiffiffi
gA3

p .

We apply equation 1 to a channel with a rectangular cross section, which is solved by numerical integration
beginning at the downstream end. The channels we observe in the field lose flow through shallow (<1 m)
cuts in the levees and by overbank flow. In this case most flow exits the channel perpendicular to its down-
stream axis, andmomentum is lost only as a consequence of fluidmass loss. The Sl term in ourmodel reflects
this behavior. The streamwise plots of water discharge in the field (Figure 3) show an approximately linear
decrease in discharge in all channels. In keeping with these data we impose flow loss along our channel (via
qwl) such that the volume of flow lost per unit distance is constant along a given channel or reach.

Following Lamb et al. (2012) we use a spreading plume beginning at the shoreline to make the modeled
water surface elevations in the channel match our field observations more closely, and to lessen the discon-
tinuity in water surface elevation at the shoreline. The plume is applied by setting the width offshore to
B = Bchannel+2(x − xsl)tan(θ), where Bchannel is the channel width at the shoreline, (x − xsl) is the distance
from the shoreline, and θ is the plume spreading angle. No flow is lost in the plume portion of the domain,
which is imposed by setting Sl to zero in the offshore cells. The purpose of the plume is to allow the flow
depth at the channel mouth to arise as a model outcome rather than an imposed boundary condition.
Lamb et al. (2012) found that the results in the channel were insensitive to plume spreading angles greater
than 1° and that plumes in nature range from 5° to 13°. We choose a spreading angle at the lower end of this
range, 5°.

2.6. Model Implementation

To initialize a model run, we first define the bed elevation, channel width, and local water discharge at all
nodes. We then apply a water surface elevation at the downstream end of the plume and solve sequentially
upstreamwith a first‐order finite difference scheme.We perform this calculation forManning's n values ran-
ging from 0.010 to 0.030, which is appropriate for large sand bedded rivers (Arcement & Schneider, 1989).
We iterate this calculation in increments of 0.001 until we find a solution that agrees with the desired
upstream water level within a tolerance of 1 cm. Model runs that cannot meet this tolerance are thrown
out as having unreasonable combinations of discharge and channel geometry. We note that the model runs
that are most similar to field conditions met the tolerance requirement and were not thrown out. Adjusting
Manning's n affects Sf in a way that is functionally equivalent to the dimensionless friction parameter used
by Nittrouer, Shaw, et al. (2012), and likewise can also be used in our sediment transport model.

The results of the hydraulic model are used at every node in the domain to calculate total sediment load
using the method of Engelund and Hansen (1967):

qs ¼
0:1
f

HSf
s−1ð Þd

� �5
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 1ð Þgd3

q
: (2)

where s is the specific gravity of quartz relative to water and d is the mean grain diameter, which we take

to be 150 μm. The dimensionless friction factor f is defined by f ¼ 2Sf
Fr . We calculate the spatial divergence

of the sediment transport field, ∂qs
∂x , to indicate which parts of the domain are most likely to be sediment

sources or sediment sinks. A reach with a positive divergence is prone to bed scour, and a reach with nega-
tive divergence is prone to deposition. We tested the importance of the sediment concentration in the lost
flow using the most conservative reasonable assumption (i.e., that lost flow carries the same mean concen-
tration in the channel) and found no significant impact on the spatial distribution of sediment divergence.
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3. Results
3.1. Trends in Flow Properties and Channel Geometry

We display the long profile of hydraulic properties for the channels of each network in Figure 3. Water sur-
face slope ranges from 3.49 × 10−5 in Cubit's Gap (CG1) to 7.29 × 10−5 in Baptiste Collette (BC3), with chan-
nel slopes in The Jump similar to those observed in Cubit's Gap. The differences in slope are consistent with
the distance from the trunk channel to the shoreline, which is smallest at Baptiste Collette, and with water
surface elevation in the trunk channel, which is highest at the more upstream Baptiste Collette. Data col-
lected during the repeat survey of Baptiste Collette shows that water surface elevations at a given location
differed by a maximum of 8 cm, and usually less than 3 cm, without any consistent trend. ADCP derived
properties were also similar during both surveys (Table 1). For our analysis we group the survey data from
both days in Baptiste Collette together.

Channel bed slopes measured from the thalweg depths are usually adverse, with slopes an order of magni-
tude greater than the water surface gradient. As with water surface gradient, the channels of each network
share similar bed gradients. The decrease in cross‐sectional area that is evident with downstream distance in
all channels is driven primarily by channel shallowing and narrowing, rather than the water surface gradi-
ent. Width to depth ratios, which range from ~10 to ~30, are similar within each network (Figure 3). The
exception to this trend is Cubit's Gap Main Pass (CG1), which is very wide relative to its depth.

Velocities are highest in Baptiste Collette, with mean velocity near 1.5 m/s in BC1 and 1 m/s in the smaller
channels. The Jump features the lowest mean velocity, hovering near 0.5 m/s throughout GT1, and near
1 m/s in GT2. The 95th percentile velocities are 0.2 to 0.5 m/s faster than mean velocities, with greater dif-
ferences observed in the larger channels. Despite substantial streamwise changes in channel geometry and
discharge, mean velocity is maintained in all channels throughout most of their length.

3.2. Along‐Channel Flow Loss

A critical feature of the distributaries in our study site is that nearly all of them lose flow along their length
(Figure 3 and Table 1). The only exception is BC2, in which the discharge increases by ~10% due to overflow
of the adjacent channels BC1 and BC3. The largest channels in Baptiste Collette and Cubit's Gap lose 33%
and 55% of their flow before the outlet, respectively, while the smaller channels (BC3 and CG2) lose approxi-
mately 80% and 90%. In The Jump, where the channels are more nearly symmetric at their bifurcation, GT1
loses 91% of its input and GT2 loses 83%. The smaller channels, as measured by cross sectional area, tend to
lose a larger fraction of their flow than the large ones.

3.3. Model Results
3.3.1. Model Validation
We first validate the 1‐Dhydraulic model by calibrating it to field data collected in the channel BC1. Channel
BC1 was selected for this validation because it is the only channel that was surveyed for water surface eleva-
tion in the plume. Channel geometry and discharge obtained from the ADCP transects were interpolated to a
50 m spacing in order to run this model, and a plume reach of 4 km was used to include all available water
surface elevation data. The interpolated bed elevations were smoothed using a 20 cell moving average to pre-
vent abrupt transitions in flow characteristics at measurement locations. A comparison of field data and
model output is shown in Figure 5. A Manning's n of 0.017 brings the modeled water surface elevation into
agreement at the upstream boundary. Modeled water surface elevation is within 10 cm for all points in a
channel that is on the order of 10 m deep. The modeled velocity matches the field data closely for most
measurement locations.
3.3.2. Differential Effect of Flow Loss
With now apply the hydraulic model to investigate the interaction of flow loss with channel geometry, and
the sensitivity to flow loss of large (wide, deep) versus small (narrow, shallow) channels. This experiment
arises from the observation that the smaller channels we measured in the field usually lost a greater propor-
tion of their flow than did the larger ones. We consider a range of flow losses in one large channel and one
small channel, both of which share a 60 cm water surface elevation loss over an 8 km reach upstream of the
shoreline, and a 2 km offshore plume. The channelized portion of the domain has an adverse bed slope of
2.5 × 10−4, and the plume portion has zero slope. Detailed model inputs for these channels, the dimensions
of which are roughly patterned on BC1 and BC3, are given in Table 2. For this experiment we adjusted flow
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loss in increments of 10% to generate a suite of runs for each channel. All modeled conditions that resulted in
reasonable Manning's n values (0.010 ≤ n ≤ 0.030) can be seen in Figure 6. While the suite of models shown
do not represent the exact geometry of any channel, so are not to be considered direct simulations, the
conditions of flow loss that are most similar to the field observations are highlighted in blue.

In our results the blue highlighted channels tend to have relatively constant trends in velocity through their
length, which is in agreement with the observational data (Figure 3). Increasing or decreasing the flow loss
leads to modeled flow conditions where significant changes in velocity occur near the channel mouth. The
behavior is also reflected in the divergence of the sediment transport capacity. Decreases in flow loss lead to
significant increases in velocity, and therefore the divergence of the sediment transport field toward the end
of the channel. Because divergence in the sediment transport field suggests erosion, this observation moti-
vates the development of a channel stability metric introduced in section 4.2.

Figure 5. Figure showing the 1‐D model calibrated to field data from channel BC1. Solid black lines represent model output, and dashed black lines show model
inputs. The shoreline, which marks the transition from channel to plume, is shown as a vertical gray bar. Blue circles represent data collected at an ADCP
transect; blue dots represent water surface elevation points. For the Bed Elevation frame, asterisks show the median bed elevation while open circles show 95th
percentile transect elevation. A Manning's n of 0.017 was used to obtain these results.
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We also note that the effects of perturbing a channel's flow loss condition are not symmetric. Reducing flow
loss from 30% to 10% in the large channel results in an increase in velocity at all points in the domain, and
increased divergence in the sediment transport field toward the shoreline, indicating potential bed scour.
However increasing flow loss along the channel from 30% to 50% causes less of a change in the divergence
of the sediment transport field. Therefore, the increase in sediment transport capacity induced by a 20%
reduction in flow loss is approximately three times larger than the reduction in sediment transport capacity
brought on by a 20% increase in flow loss.

In the small channel, the 80% loss observed in BC3 is sufficient to maintain the channel in its current state as
a sediment conduit that neither erodes nor deposits sediment. Reducing that flow loss to 70% or 60% would
cause a significant increase in velocity near the shoreline, driving a large increase in potential scour near the
channel mouth. Further increases in channel flow loss lead to unreasonable friction coefficients, so those
model runs were removed from consideration. A flow loss of 80% is very near the limit of our model.
Increasing flow loss to 90% results in only slightly more potential deposition near the channel mouth.
3.3.3. Response to Flow Loss in the Backwater Reach
The same equation that we use to model flow in the terminal distributary channels (equation 1) has been
used to model the flow and sedimentary response in the backwater reach of the Mississippi River truck
channel (Nittrouer, Shaw, et al., 2012), albeit without the imposed flow loss term. The flow loss term was
not considered by Nittrouer, Shaw, et al. (2012) because the modern Lower Mississippi River, with the
exceptions of the diversion to the Atchafalaya River and intermittent losses to the Bonnet Carre spillway,
is prevented from losing flow by manmade levees above RK 35 (Allison et al., 2012). In this section we
apply the lessons that we learned in the terminal distributaries about flow loss to investigate the extent to
which the sediment dynamics of larger channels may be affected by flood protection systems that prevent
flow loss.

Studies in the modern Lower Mississippi River have shown evidence of bed erosion downstream of New
Orleans (RK 161), including channel deepening (Galler et al., 2003), reach‐scale removal of bed volume
(Little & Biedenharn, 2014), hydrodynamic conditions that are conducive to bed scour (Nittrouer, Shaw,
et al., 2012) and exposed substrate (Nittrouer et al., 2011; Viparelli et al., 2015). But it is not clear from the
existing analyses whether all of the bed erosion that occurs toward the coast is a result of the flow confine-
ment or is inherent to large alluvial rivers in their lower reaches. The model of gradually varied flow with
lateral flow loss that we presented above can also be used to consider whether the bed morphology of the
Mississippi River could have been altered by the advent of the modern flood protection system. To do so,

Table 2
Table of Parameters Used to Initiate the Models and Corresponding Manning's n Values Corresponding to the Model Runs
Shown in Figure 6

Large channel Small channel

Channel length (m) 8,000 8,000
Channel bed slope (−) −0.00025 −0.00025
Plume length (m) 2,000 2,000
Plume bed slope (−) 0.001 0.001
Qw_in (m3 s−1) 1800 600
Width (m) 250 150
Flow depth at shoreline (m) 3 0.8

Manning's n
Flow loss 0 0.0104 —

0.1 0.0123 —

0.2 0.0142 —

0.3 0.0161 —

0.4 0.0181 —

0.5 0.0202 —

0.6 0.0223 0.0109
0.7 0.0246 0.0129
0.8 0.027 0.0148
0.9 0.0294 0.0169
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we apply our 1‐Dmodel to a hypothetical river with dimensions, slope, bed sediment caliber, and discharge
similar to those of the Lower Mississippi River. We calculate the divergence of the sediment transport field,
which we use to compute the potential bed elevation change (i.e., assuming no supply or erodibility
limitations) over the course of a year, first for the case of full flow confinement, and then for the case of
10% flow loss during flood conditions only. Both cases are of an 800 km river reach, which is greater than
the backwater length scale of the Mississippi River (Chatanantavet et al., 2012), with a 20 km spreading
plume (5°) starting at the shoreline, a rectangular channel that is 500 m wide, and a bed slope of
5 × 10−5. The flow loss is applied only at high flow. High and low flows are 35,000 and 10,000 m3 s−1,
respectively, and the river is considered to be at high flow for 15% of the time and low flow the remaining
85%. Over large spatial scales a single roughness coefficient has been shown to provide adequate results
across high and low flow conditions (Nittrouer, Shaw, et al., 2012). Following this, we use a Manning's n
of 0.017 for both cases (Arcement & Schneider, 1989).

The results, shown in Figure 7, suggest that the effects of preventing flow loss are most pronounced
toward the shoreline. When flow is confined in the channel, velocity is maintained all the way to the out-
let, causing divergence in the sediment transport field, and a high potential for erosion in the lower reach.

Figure 6. Model outputs for the suite of experiments showing the effects of variable flow loss for two consistent channel geometries. Each line represents a single
flow loss condition, as indicated by the legend. For each channel geometry. The blue line represents the model run that is closest in flow loss to the field
observations in BC1 (Large Channel) and BC3 (Small Channel). Manning's n values that correspond to each flow loss condition can be found in Table 2.
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Figure 7. Model results and field data at Mississippi River scale. (a–e) Model outputs for the case of high discharge (35,000 m3 s−1) with 0% and 10% flow loss,
and low discharge (10,000 m3 s−1) with 0% flow loss. Note that positive values for the divergence of the sediment transport field correspond to potential
erosion, and negative values to potential aggradation. (f) The potential aggradation that results from running the 1‐D model at high flow for 15% of the year and
low flow for 85% of the year. The difference between the case that loses flow and the one that does not suggests that any impacts from confining flow are
strongest downstream. (g) Deposition per mile experienced in the Mississippi River from 1963 to 2004. This observational data set was extracted from Little and
Biedenharn (2014).
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But if even 10% of flow is lost along the channel, the resulting decrease
in velocity near the shoreline results in a sharp reduction in sediment
transport capacity, and a sharp increase in potential aggradation.
Available data from the Lowermost Mississippi River show bed degrada-
tion in the reach below New Orleans (RK 167) until approximately
River Kilometer 35 (Galler et al., 2003; Little & Biedenharn, 2014;
Nittrouer et al., 2011), and this analysis suggests that that pattern is
enhanced by the flow confining levee system currently in place. The
response to flow loss is not as strong at the upstream end of the back-
water reach. There, the effect of allowing 10% flow loss is a slight
increase in potential sedimentation rate relative to the flow confined
case, but the difference is not easily distinguishable from the difference
between the two cases in the normal flow reach further upstream.

Themorphological evolution of the LowerMississippi River's bed is signif-
icantly complicated by a number of anthropogenic and natural factors
whose onsets overlap in time: diversion to the Atchafalaya River and
Bonnet Carre Spillway (Allison et al., 2013; Fisk, 1952; Roberts et al., 2003);
upstream changes to sediment supply by dams and bank
stabilization efforts (Kemp et al., 2016; Tweel & Turner, 2012); substantial
channel shortening by cutoffs (Biedenharn et al., 2000); and a flow confin-
ing levee system (Barry, 1998). As a result, no simple explanation of the
current bed morphology is appropriate. But our model results suggest that
the lower portions of the backwater reach could be deeper as a result of

the levee based flood protection system. Overall, the 10% flow loss case suggests a channel bed that is shal-
lower than the present one throughout the backwater reach, but especially so as the river nears
the shoreline.

4. Discussion
4.1. How Much Flow Do Unmanaged Channels Lose?

Our model results and field data taken together demonstrate that flow loss is important to the hydraulic and
sedimentary function of distributary channels as they approach base level. A given channel can satisfy the
geometric constraint imposed by base level by the established mechanisms of increasing velocity toward
the shoreline or scouring a deeper bed and also by adjusting its capacity to convey flow. Despite its impor-
tance in this respect, the prevalence of flow loss is not well documented in natural distributary channels.
While analyses of overbank environments in modern (Lewin et al., 2016) and prehistoric (Shen et al., 2015)
rivers point to flow loss as integral to the function of the channel, there are very few data sets that quantify
flow loss throughout in distributary networks prior to major anthropogenic modification.

However, the 1867 report of Humphreys and Abbot to the United States Bureau of Topographical Engineers
(Humphreys & Abbot, 1867) does contain a comprehensive analysis of flow lost to crevasses from Helena,
Arkansas, to New Orleans, Louisiana, during the flood of 1858 on the Mississippi River. Discharge in the
river was obtained by measuring cross sectional area with lead lines, and measuring velocity at various
depths with weighted floats. Discharge to the crevasses was considerably more difficult to obtain, but the
measurement principles were similar to those in the river. The largest source of error in measuring the cre-
vasse discharge was in extrapolating between measurements in a crevasse whose dimensions were rapidly
changing. At the peak of the flood, the discharge passing Vicksburg, MS (RK 700) was approximately
35,000 m3 s−1, which nearly coincides with the 33,000 m3 s−1 that is required to elevate the river at
Vicksburg above the surrounding landscape today. In the modern river this value is exceeded almost
annually. In 1858, this discharge was sufficient to cause widespread levee failure and inundation beyond
any other flood observed since 1798 (Humphreys & Abbot, 1867). Of the discharge that passed Vicksburg
in 1858, 17% was lost to crevassing between Vicksburg and New Orleans, not including losses to the
Atchafalaya River (Figure 8). The river was confined by levees at this time, so all of the crevasses tabulated
were the result of levee failures that evolved rapidly throughout the course of the flood, rather than natural

Figure 8. The flood of 1858. (a) Mississippi River discharge at Vicksburg
and New Orleans during the flood of 1858, and total discharge from
crevasses along the reach from Vicksburg to New Orleans. (b) Crevasse
discharge as a fraction of Vicksburg discharge. Data are from Humphreys
and Abbot (1867).
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crevasses with relatively stable configurations. This data point is likely a
lower bound on the amount of flow lost during a major flood event to cre-
vassing from the main channel of the Mississippi River prior to anthropo-
genic modification, therefore the results from section 3.3.3 (where 10%
loss was considered) represent a conservative estimate of the influence
of flow loss on velocity and sediment transport in the lower reaches of a
large, single threaded river.

In the Wax Lake Delta two recent studies found flow loss to distributary
islands to be significant throughout the distributary network. Shaw
et al. (2016) infer patterns of flow offshore of the Wax Lake Delta and
are able to deduce that during a large flood event 59% of the combined dis-
charge of two adjacent distributaries is lost from the channels upstream of
the subaqueous channel tips. This estimate includes flow that is lost over
the subaerial levee as well as the subaqueous levee beyond the shoreline,
and to cuts in both. Hiatt and Passalacqua (2015), working in the same
Wax Lake Delta channels but during low flow conditions, study the flow
lost in two passes between their shared upstream difluence and the shore-
line. Their data show that when the tides are not considered, one pass
loses approximately a quarter of its flow and the other loses approximately
half. The losses experienced in the Wax Lake Delta—which is similar in
scale to the subdeltas from which we collected field data (Table 1) —are
in the range of magnitudes experienced by the subdeltas in the
birdsfoot delta.

4.2. Relevance of Flow Loss to Distributary Channel Evolution

While our data does not directly document the geomorphic evolution of
any channel, the hydraulic effects of flow loss contribute significantly to
the patterns of aggradation and erosion in distributary channels. Hiatt
and Passalacqua (2017), using a 2‐D model with a dynamic connection
between channel and overbank that is modulated by vegetation roughness
in the overbank, came to a similar conclusion. Their modeled patterns of
water surface elevation profile are similar to what our model shows,
respond in the same way to flow loss, and like ours tend to produce the

highest velocity immediately upstream of the channel mouth. It is clear therefore that flow loss belongs in
any discussion of channel formation and the evolution of rivers at their mouths and in their lower reaches,
where it must compete with other relevant processes such as wind‐driven waves (Nienhuis et al., 2015) and
tides (Nienhuis et al., 2018; Shaw & Mohrig, 2014).

In this context our modeling results that show differential sensitivity to flow loss between large and small
channels raise the possibility of a geomorphic connection between flow loss and channel stability that has
not been specifically examined.

We define a stable channel reach as one in which sediment transport capacity does not experience signifi-

cant streamwise changes. As an indicator of channel stability we introduceq*s , which is the ratio of sediment
transport capacity per unit width at the channel outlet to that at the upstream boundary. Channels with high

q*s are expected to undergo net erosion over their length, whileq*s less than one indicates an infilling channel,

and a q*s near 1 indicates a stable channel.

We use our modeled sensitivity results (Figure 6) to display q*s as a function of flow loss (Figure 9). Field

results plot in line with the modeled trend and plot near q*s = 1, implying that the field case represent stable

channel configurations. We also observe that the slope of the flow loss versus q*s plot is steeper for the small

channel in the vicinity of q*s=1, implying that a small stable channel is more resistant to perturbations than
the large one, because a small decrease in flow loss is met with a large increase in erosion. Our results suggest
that small changes in flow loss, for example by crevassing or crevasse healing, can affect channel stability. It
is notable that the channels of each distributary network in our observational data set share similar bed

Figure 9. Fraction of flow lost versus q*s ratio of width averaged sediment
transport rate at the exit to the entrance of two modeled channels
presented in section 3.3.2. The large and small modeled channel geometries
are those shown in similar to BC1 and BC3, respectively. Field results
derived from ADCP measurements in channels BC1 and BC3 are plotted as
open circles in the parameter space. Asl indicates the modeled channel
cross‐sectional area at the shoreline.
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slopes, because this implies an equivalent loss of flow depth between the upstream entrance to the channels
and the shoreline. But because the small channel is shallower than the large one, a given decrease in flow
depth causes a proportionally larger decrease in cross sectional area, and thus a larger increase in mean velo-
city. For the combination of geometry and flow considered in this comparison the combined result is that the
shallower channel's cross sectional area decreases by over 75% along the length of the channel while the
large channel's area decreases only by 45%. For this reason the small channels in our model respond more
strongly to variations in flow loss than do the large ones. This behavior is also observed in the field, where
the smaller channels lose proportionately more flow than the large ones. While our modeling results do
not directly address the interactions among the channels of a distributary network, the addition of flow loss
to our understanding of channel stability does raise the possibility that the channels of a given network may
be tuned by flow loss to a stable state and that flow loss is one mechanism that maintains bifurcations in
asymmetric states (e.g., Kleinhans et al., 2013). Autogenic fluctuations in flow loss can therefore play a role
in maintaining a channel network in a stable configuration. This also suggests a self‐organized relationship
between flow loss and channel morphodynamics and points to a previously unrecognized paleohydraulic
control on the architecture of deltaic stratigraphy.

The q*s is primarily based on hydraulic measurements and does not take into account any information about
sediment supply from upstream, nor does it explicitly simulate erosion or deposition along the channel.
Nevertheless, its use is consistent with data in dynamic delta environments that show channel change initi-

ating from downstream (Lamb et al., 2012; Shaw &Mohrig, 2014). The principle drawbacks of q*s are that (1)
analogous to thermodynamics versus kinetics in physical chemistry, it tells us whether a change in channel
configuration is likely to occur but provides no information about how quickly, and (2) it does not consider
feedbacks that occur when deposition or erosion are introduced. Nittrouer, Shaw, et al. (2012) productively
used the divergence of the 1‐D sediment transport field to examine the net impact that oscillations between
low flow and flood conditions have on the channel bed. This is an excellent method of assessing regional
trends, and provides some information about the speed with which a channel could change but does not pro-

vide an accessible way of making comparisons between channels. We use theq*s here because it explicitly ties
the fate of a channel to its mouth dynamics, and because it can be used to easily compare multiple channels.

5. Summary and Conclusions

Hydraulic data collected in the channel networks of three subdeltas show that flow loss via overbanking and
small crevasses is widespread in unmanaged distributary channels, and significantly contributes to the
observed trends of velocity and sediment transport capacity. Sensitivity analysis is performed on flow loss
with 1‐D numerical model of gradually varied flow in the backwater reach. We show that velocity and sedi-
ment transport trends in the backwater reach are substantially modulated by flow loss, that shallower chan-
nels in this reach are more sensitive to flow loss compared to deeper ones, and that flow loss is likely to play
an important but underrecognized role in the evolution and maintenance of distributary channel and river
mouth geometries. Finally, we apply the lessons learned in the subdelta distributary channels to the
Mississippi River trunk channel and identify the possibility that the lower portions of the backwater reach
are deeper as a result of the manmade flood protection system that restricts flow losses from the
trunk channel.
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