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‘The nature of autogenic processes and the propagation of environmental signals in sediment transport 
systems’ – Chloe Griffin 

 

 
 

Thesis abstract 

The internal (autogenic) dynamics operating ubiquitously within sediment transport systems 

mediate the transport of sediment through a system, which controls the morphology of 

landscapes and dictates the architecture of the stratigraphic record. Autogenic processes are 

characterised by localized episodes of sediment storage and release that occur throughout a 

sediment transport system, which generate fluctuations in sediment transport and add noise to 

a time series of sediment flux and the resulting strata. This noise can obscure or shred evidence 

of sediment flux signal generated by external (allogenic) environmental perturbations. This 

complex interaction of allogenic and autogenic processes makes records of environmental 

change difficult to interpret. The duration and magnitude of autogenic processes within 

sediment transport systems denote thresholds for the propagation of environmental signals 

through landscapes and preservation in strata. If the sediment flux signal is of the same duration 

and/or magnitude as the autogenic processes within the system, then the signal will be shredded 

(e.g. degraded in amplitude), and hence be rendered undetectable in the output flux. 

Conversely, when the sediment flux signal is of longer duration and/or magnitude than the 

autogenic processes, then it will overwhelm the magnitude of the variability present within the 

system and hence produce a detectable, measurable response at the system outlet. However, 

the concept of signal preservation has become complex, where a signal is only defined as 

preserved when a detectable response is present, meaning that signals which cannot be 

differentiated by autogenic noise, or those rendered undetectable by stratigraphic 

incompleteness can be misinterpreted. Therefore, the aim of this thesis is to develop a 

quantitative understanding of the nature and timescales of autogenic processes, which can be 

used to quantify thresholds for signal shredding and detection in both landscapes and strata. 

This is achieved using both a physical avalanching rice pile and a numerical granular pile, 

which can elucidate the nature of autogenic processes within sediment transport systems and 

offer a rich suite of autogenic statistics along a simple 1D transport path, comparable to 

sediment transport within field scale systems. The results of this thesis: (1) provide a 

quantitative understanding of the nature and timescales of autogenic processes operating within 

sediment transport systems, and use this understanding to develop a framework that can predict 

the severity of signal shredding and establish robust confidence limits of signal detectability in 

landscapes and strata; (2) quantify the effect of  stratigraphic incompleteness and the 

assumption of linear sedimentation rate on the preserved structure of autogenic processes and 

consequently the detectability of environmental signals; and (3) provides insight into how the 

magnitude of the stochastic processes operating within sediment transport systems governs the 

amount of degradation environmental signals experiences and the thresholds for signal 

detectability within different geomorphic environments. The results in this thesis contribute to 

a quantitative understanding of the nature of autogenic processes, which is crucial for (1) the 

accurate reconstruction and confident justification of past environmental signals (2) 

quantifying the reliability of landscapes and strata as archives of future paleoenvironmental 

variability and (3) understanding the geomorphic environments and sedimentary records which 

best preserve evidence of paleo-surface processes and environmental signals.  
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1. Introduction 

1.1. Motivation 

In the last decade, interest in Earth surface dynamics has accelerated as we address questions 

regarding the response of landscapes to environmental change (Hessler and Fildani, 2019; 

Straub et al., 2020). The physical record of these processes lies in the resultant stratigraphy, 

but to fully employ this indispensable record, we must understand the processes that give rise 

to clastic strata (Hessler and Fildani, 2019; Straub et al., 2020). The sediment grains that 

constitute clastic strata originate from the upland erosional segments of a sediment transport 

system (STS) (Schumm, 1971). This sediment can be mobilised by a variety of erosional agents 

(e.g. gravity, wind, water, ice, and/or anthropogenic activity) and transported down-system via 

a complex channelized region until permanent deposition within a sedimentary basin (Romans 

et al., 2016). Here, it undergoes gradual burial, compaction, and lithification over geological 

timescales (Lai et al., 2018), preserving a record of Earth surface processes.  

Landscapes evolve in response to environmental perturbations over a range of spatio-temporal 

scales (Daniels, 2008; Rohais et al., 2012; Romans et al., 2016; Allen, 2017; Blum et al., 2018; 

Straub et al., 2020); commonly these are considered a simple function of climatic shifts, 

tectonic uplift or eustatic change (Forzoni et al., 2014). However in modern times 

anthropogenic modification is becoming an increasingly dominant mechanism of 

environmental forcing worldwide (Jones et al., 2013; Lane et al., 2019). These forcing 

conditions (Figure 1.1) operate over a range of timescales, from minutes (e.g. storms, 

earthquakes, floods or dam removal) to millions of years (e.g. climatic cycles, mountain 

building, land use alterations) (Romans et al., 2016). Environmental forcings generate 

variations in sediment flux and the grain size distribution exported from upland catchments 

(e.g. tectonics, climate and anthropogenic change) and also control the availability of down-

system accommodation for deposition (e.g. eustatic change) (Armitage et al., 2011; Whittaker, 

2012; Li et al., 2018; Sharman et al., 2019). The variations produced as a result of 

environmental forcing shape the architecture of the stratigraphic record and provide a unique 

record of Earth surface processes and environmental change which exceeds the spatiotemporal 

scales of other environmental archives (e.g. ice cores or lake varves) (Wilkinson et al., 2009; 

Castelltort et al., 2015; Romans et al., 2016; Sharman et al., 2019). Therefore, the geomorphic 

expression of landscapes and their resultant stratigraphic products allow scientists the ability 

to answer epistemic questions in our understanding of landscape sensitivity to major 
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environmental events and decode the temporally variable controls on sediment production 

(Whittaker et al., 2010; Mahon et al., 2015; Brooke et al., 2018).  

However, direct communication of sediment supply signals from source to sink is improbable. 

Even under steady forcing conditions, sediment movement through transport systems is non-

linear, which can cause environmental sediment flux signals to undergo varying degrees of 

modification during transport from source to sink (Paola, 2016; Romans et al., 2016; Hajek & 

Straub, 2017; Scheingross et al., 2020). The dynamics operating within landscapes temporally 

reconfigure STSs (e.g. autogenic processes), which shape the architecture of the stratigraphic 

record (Hajek & Straub, 2017; Burgess et al., 2019; Scheingross et al., 2020). A quintessential 

example of autogenic processes is the avulsion of channels within a channel-floodplain system 

(Figure 1.1.) (Stouthamer & Berendsen, 2007; De Haas et al., 2016; Hajek & Straub, 2017; 

Straub et al., 2020). Episodes of sediment storage and release as a result of autogenic processes 

have the effect of obscuring, buffering, or completely destroying (‘shredding’) sediment flux 

signals as they propagate across the Earth’s surface (Jerolmack & Paola, 2010; Van De Wiel 

& Coulthard, 2010; Hajek & Straub, 2017; Toby et al., 2019; Straub et al., 2020). Alongside 

this, spatial variations in sedimentation rate and phases of no deposition or erosion can limit 

the recording of environmental signals within stratigraphy (Foreman & Straub, 2017; 

Trampush & Hajek, 2017; Straub et al., 2020). These processes can render signals undetectable 

(Table 1) within a time series of sediment flux at the system outlet, and hence undetectable 

within the stratigraphic record, complicating the latter reconstruction of past environmental 

signals from the sedimentary record (Allen, 2008; East et al., 2015; Paola, 2016; Hajek & 

Straub, 2017; Harries et al., 2019). The emphasis of many studies has been to quantify 

thresholds for the preservation of environmental signals in both landscapes and strata (e.g. 

Burgess et al., 2019; Foreman & Straub, 2017; Jerolmack & Paola, 2010; Li et al., 2016; Straub 

& Esposito, 2013; Straub & Foreman, 2018; Toby et al., 2019, 2022; Wang et al., 2011), 

however, to further understand these thresholds, the thresholds for signal modification (e.g. 

signal shredding) and signal detectability must be quantified and differentiated to further 

enhance understanding of signal propagation and preservation. 
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Table 1.1: Key terms with associated definitions 

Term Definition 

Autogenic Natural variability or dynamics which arise solely from the interaction of 

internal system components within a sediment transport system. For 

example, bed and bar form formation (Hooke, 2007), dune migration 

(Ewing et al., 2006), hillslope landslides (Roering et al,. 2021), channel 

avulsion (Jerolmack & Mohrig, 2007), deltaic growth (Kim & Jerolmack, 

2008). 

Environmental 

(allogenic) 

forcing 

Large scale external factors which control the volume of sediment and the 

accommodation available on the Earth’s surface.  Allogenic forcing 

mechanisms include: climatic change, tectonic uplift, eustatic change or 

anthropogenic activity. 

Environmental 

signal 

Attributes of landscape structure, sediment transport capacity and the 

characteristics of the resultant stratigraphy that can be linked directly to 

environmental forcing. 

Self-organized Ordered or patterned autogenic behavior.  

Signal 

degradation 

The smearing of externally-driven signals by sediment transport processes 

across a range of spatiotemporal scales, resulting in the amplitude of the 

environmental signal at the system output being severely degraded when 

compared to the amplitude of the original signal (Griffin et al., 2023). 

Signal detection Signals which produce a measurable response in a power spectrum which 

exceeds the respective confidence band. 

Signal shredding The smearing of externally-driven signals by sediment transport 

processes across a range of spatiotemporal scales (Jerolmack & Paola, 

2010). 

Stochastic Processes which are defined by a random probability distribution. 

Stratigraphic 

incompleteness 

The concept that sedimentary records contain temporal gaps of varying 

duration and hence the sediment present imperfectly samples the time 

between the start and end of the stratigraphic section. Either not all time 

steps are represented by preserved sediment (incomplete) or all time steps 

are represented by preserved sediment (complete). 
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The work in this thesis quantifies thresholds for the shredding and detectability of sediment 

flux signals and develops an understanding of the controls on the detectability of signals within 

a landscape using a physical avalanching rice pile. The rest of this chapter provides an overview 

of allogenic and autogenic dynamics controlling landscape evolution, our current 

understanding of thresholds for signal shredding and signal preservation within landscapes and 

strata, and finally the use of granular piles as an analogy for landscapes. Chapter 2 presents the 

methods used in this thesis: the suite of physical rice pile experiments and the numerical 

granular avalanching system. The physical experiments support the theoretical framework 

presented in Chapter 3, where two autogenic timescales, defined by the temporal structure, are 

utilised to differentiate timescales of signal shredding from signal detectability. Chapter 4 

builds on the theory presented in Chapter 3, and presents a framework for the detectability of 

environmental signals within a record that is temporally incomplete (akin to stratigraphic 

incompleteness). Chapter 5 utilises a numerical granular pile to explore signal shredding and 

detectability thresholds within landscapes where the magnitude of autogenic noise is low. 

Chapter 6 discusses the overarching themes of each chapter in relation to the importance of this 

work and the implications for signal reconstruction from landscapes and strata. 
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Figure 1.1: Conceptual overview of the Earth’s surface (103 km in length and 102 km wide) showing 

the interaction of allogenic and autogenic processes over a range of timescales. 

Allogenic processes (red; e.g., climate, tectonics, sea level and anthropogenic change) operating over 

a range of spatiotemporal scales control sediment availability and accommodation. Autogenic 

processes (blue), operating over similar spatiotemporal scales, arise spontaneously in sediment 

transport systems. These processes generate periods of sediment storage and release which creates 

heterogeneity in the distribution of sediment across a landscape and influences the propagation of 

sediment flux signals. Allogenic and autogenic processes operate over similar timescales and hence 

simultaneously control the evolution of landscapes and the production of strata. Timescales of 

autogenic processes from Glade et al., (2019), Clarke et al., (2010), Straub & Wang, (2013) and Voller 

et al., (2019). Figure adapted from Hajek & Straub, (2017) and Romans et al., (2016). 

1.2. Allogenic forcing and the generation of sediment supply signals 

STSs are sensitive to external (allogenic) variations in environmental conditions over a range 

of spatiotemporal scales, from minutes to millions of years (Romans et al., 2016; Allen, 2017; 

Straub et al., 2020) (Figure 1.1). Allogenic forcing (namely climatic, tectonic eustatic or 

anthropogenic change) can trigger temporary or sustained changes in any physiological, 

biological or chemical attribute of the Earth’s surface, which are known as environmental 

signals (Straub et al., 2020; Tofelde et al., 2021). Environmental signals can be recorded within 

many time-series generated from environmental measurables, including but not limited to, 

speleothems (Fairchild et al., 2006), ice cores (Masson-Delmotte et al., 2006), tree rings 

(Gagen et al., 2022), ecological populations (Cazelles, 2004), isotope and chemical data (Leng 

& Marshall, 2004) and sedimentary parameters (sediment flux, size distribution and 

composition; Tofelde et al., 2021). Whilst this thesis focuses on signals in the form of temporal 

variations in sediment flux that propagate down-system, upstream propagation of signals (e.g. 

oscillations in relative sea level) driven by base level change can also be a major control on 

stratigraphic architecture (Romans et al., 2016). However, the study of sediment flux signals 

integrates geomorphology, sedimentology and stratigraphy to study the propagation of 

environmental signals across different timescales (Jerolmack & Paola, 2010; Simpson & 

Castelltort, 2012; Armitage et al., 2013; Ganti et al., 2014; Romans et al., 2016; Blum et al., 

2018; Li et al., 2018; Duller et al., 2019; Caracciolo, 2020; Straub et al., 2020; Tofelde et al., 

2021; Toby et al., 2022).  

Throughout geological history, a combination of climate and tectonics has regulated erosion 

and delivery of sediment to a STS (Forzoni et al., 2014; Caracciolo, 2020). However, these 
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processes operate over a variety of temporal scales. Over mesotimescale (104 to106 years; 

Romans et al., 2016), tectonically active areas can experience denudation rates three orders of 

magnitude higher than their inactive counterparts (Hovius, 1996; Hecht & Oguchi, 2017), 

hence generating low frequency, long period sediment flux signals (Allen & Densmore, 2000). 

Over short timescales (102 – 104 years; Romans et al., 2016), increased precipitation as a result 

of climatic shifts can generate sharp peaks and troughs in sediment flux which generally leads 

to the supply of high frequency (e.g. Milankovitch scale) sediment flux signals to basins (Allen 

& Densmore, 2000; Castelltort & Van Den Driessche, 2003). However, direct human 

denudation has increased by a factor of 30 since the mid 20th Century (Zalasiewicz et al. 2015; 

Cendrero et al. 2022), hence anthropogenically induced sediment flux signals have intensified 

(Waters et al., 2016; East et al., 2022) as a result of deforestation (Syvitski & Kettner, 2011), 

road constructions (Waters et al., 2016), dam removal (Ritchie et al., 2018), land use change 

(Giri et al., 2019) and mining (Wilkinson et al., 2009) to name a few (see review by Syvitski 

et al., (2022). Although the movement of sediment during construction activities accounts for 

approximately 30% of all humanly transported sediment (Hooke, 2000), agricultural practices 

are the most dominant process of global anthropogenic sediment evacuation (Sherriff et al., 

2019). The intensity of modern anthropogenic activities has been found to trigger more drastic 

geomorphic change than natural forcing mechanisms (East et al., 2022), due to the onset of 

high amplitude, short durations perturbations, hence these have great potential to impact 

landscapes and therefore be preserved in the future rock record (Corcoran et al., 2015).  

Sediment flux signals of environmental change are suggested to propagate from source to sink, 

allowing for the reconstruction of past environmental perturbations and providing insight into 

the response of landscapes to future environmental change (Forzoni et al., 2014; D’Arcy et al., 

2017; Harries et al., 2019; Sharman et al., 2019; Straub et al., 2020; Tofelde et al., 2021). 

However, the response of a STS to external environmental perturbations is complex (Schumm, 

1973), meaning not all sediment flux signals input to the system are faithfully transmitted down 

the system. Sediment transport dynamics operating within the Earth’s surface control sediment 

transport and generate impediments for signal storage (e.g. buffering, shredding or stratigraphic 

incompleteness; (Jerolmack & Paola, 2010; Simpson & Castelltort, 2012; East et al., 2015; 

Romans et al., 2016; Toby et al., 2019; Straub et al., 2020; Tofelde et al., 2021), complicating 

the reliable reconstruction of environmental signals from the geological record (Figure 1.2). 

Therefore, understanding how and when landscape dynamics impede the stratigraphic storage 

of environmental signals is of critical importance for: predicting the spatiotemporal scales of 
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mass transfer, understanding landscape sensitivity and resilience (Thoms et al., 2018), 

predicting the export and burial of terrestrial organic carbon (Kao et al., 2014), interpreting the 

stratigraphic record for natural resource exploration and production (Bhattacharya et al., 2016), 

and finally understanding the Earth’s response to ongoing and future natural and anthropogenic 

change (Densmore et al., 2007; Forzoni et al., 2014; Mahon et al., 2015; D’Arcy et al., 2017; 

Sharman et al., 2019). 

 

Figure 1.2: Source to sink signal propagation. 

Simplified source to sink sedimentary system, where a sediment flux (Qs) signal (green) is generated in 

an eroding catchment in response to an environmental perturbation (red). The signal is transported 

through a landscape in a channelized zone via a series of storage and release events (autogenic 

processes; blue) to depositional sink. In the absence of signals coming from the erosion zone, autogenic 

processes in the transfer zone add variability, or ‘noise’, in measures of sediment flux. When a sediment 

flux signal is transported through a system, autogenic processes modify and attenuate the signal. This 

means that the signal measured in the zone of deposition may not resemble the true input signal. 

Adapted from Romans et al., (2016). 

 

1.3. Autogenic processes within sediment transport systems 

The transportation and distribution of sediment across the Earth’s surface is environment 

dependent due to the combined effects of: variations in sediment properties (e.g. grain size, 
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shape, density and cohesion), sediment transport processes and the thresholds for sediment 

transport (Jerolmack, 2011; Benavides et al., 2022). This means that the power to transport 

sediment is unevenly distributed within sedimentary environments, which generates landscape 

instability and eventually triggers landscape re-organization (Hajek & Straub, 2017). A 

quintessential example of this process is channel avulsion: in fluvial systems, water and 

sediment are transported in geographically confined channels, causing in-channel 

sedimentation rates to greatly exceed that of the surrounding floodplains. This preferential 

aggradation eventually leads to perched channels, which triggers channel avulsion to reinstate 

a degree of landscape stability (Ganti et al., 2016; Li et al., 2022; Mohrig et al., 2000). These 

morphodynamic processes occur entirely as a consequence of crossing sediment transport 

thresholds and trigger internal system re-configuration are referred to as autogenic processes 

(Beerbower, 1964; Hajek & Straub, 2017; Swanson et al., 2019; Scheingross et al., 2020). 

Examples of autogenic processes abound: on small scales, these processes drive bed and 

barform formation and over larger scales control the generation and evolution of channel 

networks, delta lobes, shoreline features and alluvial fans (Phillips, 1999; Muto & Steel, 2004; 

Chin & Phillips, 2007; Hooke, 2007; Jerolmack, 2009, 2011; Ganti et al., 2013; Murray et al., 

2014; Pelletier et al., 2015; Paola, 2016; Straub et al., 2020; Brooke et al., 2022). The vast 

range of scales over which autogenic processes operate generates a vast spectrum of autogenic 

frequencies in landscape morphology (Jerolmack & Paola, 2010).  

Autogenic processes naturally occur in the absence of any external environmental perturbations 

and are ubiquitous across landscapes, hence are imperative in shaping the geometry of 

landscapes and the architecture of the resulting stratigraphic record (Paola, 2016; Hajek & 

Straub, 2017; Burgess et al., 2019; Scheingross et al., 2020). However, landscape dynamics in 

all environments inevitably result from both autogenic and allogenic processes (Hajek & 

Straub, 2017; Mouchené et al., 2017). This is because allogenic processes influence water 

discharge, sediment composition and topographic gradients which control STS  morphology 

and dynamics (Edmonds & Slingerland, 2010). The complex interaction of these processes 

complicates the preservation of stratigraphic sequences. Whilst autogenic processes operate 

independently of allogenic forcing, variations in boundary conditions as a result of allogenic 

forcing influence the morphology of STSs and the rate at which morphodynamic processes 

occur (e.g. channel migration rate and avulsion frequency) (Chadwick & Lamb, 2021; 

Edmonds & Slingerland, 2010; Li et al., 2017; Reitz & Jerolmack, 2012; Straub et al., 2015; 

Wickert et al., 2013). For example, increasing the rate of accommodation generation (Wickert 
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et al., 2013), the sediment supply rate (Bryant et al., 1995) and/or water discharge (Van Dijk 

et al., 2009) increases the rate of autogenic processes within a STS, and hence the rate of 

sediment transport. Therefore, understanding the relationship between autogenic and allogenic 

processes within STSs is important as the rates and scales of autogenic processes, controlled 

by allogenic forcing, determine surface and stratigraphic architecture but also the propagation 

and preservation of environmental signals (Straub et al., 2020). 

Autogenic processes are commonly associated with the self-organised behaviour of STSs over 

sufficiently long timescales (Swanson et al., 2019), where the products of autogenic dynamics 

are distributed in statistically spatially ordered patterns (Hajek et al., 2010; Budd et al., 2016) 

and create organised depositional architecture (Hoyal and Sheets, 2009). Hence, the self-

organization of a physical system can be viewed as both a statistical and a measurable property 

(Phillips, 1999). Self-organization of STS occurs over a sufficiently long timescale (Swanson 

et al., 2019), that is scaled to the size of the system and the nature of the interactions between 

the individual system components (Hajek & Straub, 2017). Examples of these processes 

include the regular spacing of bedforms and point bars in meandering rivers (Hajek & Straub, 

2017), the size distribution of sediment storage and release events within a sediment flux time 

series, or the organization of surface topography and the resultant stratigraphic products (Paola, 

2016). The interaction between flow and sediment as result of autogenic processes generates 

episodes of sediment storage (deposition and aggradation) and release (erosion and bypass) 

within landscapes over a range of spatiotemporal scales resulting in stochastic sediment 

transport through a STS (Jerolmack & Paola, 2010; Jerolmack, 2011; Van De Wiel et al., 

2011). Whilst sediment storage and release is ubiquitous in all sedimentary environments 

(Hajek & Straub, 2017), the timescales of sediment storage can vary between systems. For 

example, suspended sediment in rivers experiences minimal storage in comparison to bedload 

sediment which can experience sediment retention times between minutes to years (Lambert 

& Walling, 1988).  Furthermore, portions of sediment liberated by landslides on hillslopes can 

be rapidly transported downslope and be deposited directly into the fluvial network, whereas 

the majority of sediment will remain trapped in the catchment for thousands of years (Cislaghi 

& Bischetti, 2019). Stochasticity over a variety of scales generates significant noise in measures 

of sediment flux over the full range of autogenic frequencies (Kim & Jerolmack, 2008; 

Jerolmack & Paola, 2010; Van De Wiel & Coulthard, 2010; Romans et al., 2016). This noise 

has the ability to obscure evidence of allogenic forcing within landscapes and strata, when the 

signal is of the same magnitude as autogenic processes (Jerolmack & Paola, 2010; Van De 
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Wiel & Coulthard, 2010; Morris et al., 2015). Furthermore, unlike allogenic processes which 

can generate distinctive periodicity, autogenic noise is commonly found to encompass random 

sediment transport fluctuations (Jerolmack & Paola, 2010; Paola, 2016). These fluctuations are 

assumed to be of small magnitude and uncorrelated (Ventra & Nichols, 2014), but several 

studies using both experimental and field data have shown that sediment flux variations as a 

result of purely autogenic processes can also record evidence of cyclicity (Burgess et al., 2019; 

Foreman & Straub, 2017; Hajek et al., 2012; Kim & Jerolmack, 2008; Meyers, 2012; Miall, 

2015; Stouthamer & Berendsen, 2007; Van De Wiel & Coulthard, 2010). For example, channel 

avulsion within experimental delta systems has been found to produce cyclic sedimentation 

packages (e.g. Kim & Jerolmack, 2008), and automatically induced variations in channel and 

sheet flow can produce cyclic sedimentation in fault-bounded basins (e.g. Kim & Paola, 2007), 

within fluvial deltas (e.g. Van Dijk et al., 2009) and on alluvial fans (e.g. Clarke et al., 2010; 

Nicholas & Quine, 2007). This makes isolating the individual impacts of allogenic and 

autogenic processes a major challenge without prior knowledge of the styled allogenic forcing 

conditions imposed on a STS (Clarke, 2015). To differentiate these processes, it is important 

to understand and characterise the nature and timescales of autogenic processes, to correctly 

decipher palaeo-environmental variations and palaeo Earth surface processes (Powell et al., 

2012).  

A key aim of geomorphologists and stratigraphers is to accurately reconstruct landscape 

response to past environmental change. However, inference of environmental signals from a 

time series of sediment flux or from the stratigraphic record is complicated without a thorough 

understanding of the nature of autogenic processes. To accurately interpret the environmental 

record, quantitative frameworks set by autogenic processes must be utilised which can establish 

robust confidence limits of environmental signal transfer and detectability within landscapes 

and strata. The next section reviews three impediments to signal storage within STSs, and the 

current temporal thresholds used to quantify signal propagation and preservation potential in 

both landscapes and strata. 

1.4. The propagation and preservation of sediment flux signals through channelized 

landscapes and to strata 

Sections 1.2 and 1.3 discussed how external environmental perturbations generate sediment 

flux signals that can propagate through a STS and have the potential to be preserved in 

depositional basins. However, complex sediment transport dynamics within the central, 
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channelized transport zone of a STS can have fundamental implications for the propagation 

and storage of environmental signals. The transfer zone of STSs (Allen, 2017) conveys 

sediment from source to sink, and hence plays a key role in the propagation and preservation 

of external sediment flux signals. This region is composed of self-formed fluvial systems, 

which funnel water and sediment down-system through a network of narrow, channelized 

corridors (Figure 1.1, 1.2). The evolution and reconfiguration of fluvial networks within the 

transfer zone (as a result of autogenic processes) generates temporally variable patterns of 

deposition, stasis and erosion on a variety of scales. This variability can modify or destroy 

evidence of external sediment flux signals (Jerolmack & Paola, 2010). Hence, understanding 

fluvial processes over a range of spatiotemporal scales is important for predicting the 

modification and propagation of sediment flux signals.  

Within fluvial systems, sediment storage and release processes operate on a range of 

spatiotemporal scales (Paola et al., 2016; Van de Wiel & Coulthard, 2010) (Figure 1.1.). On 

bed scale, the migration of in-channel bedforms (i.e., ripples, dunes and bars) can be thought 

of as small-scale autogenic morphology (Goldstein et al., 2011; Paola et al., 2016). These 

millimetre to meter scale features evolve and migrate rapidly (seconds to minutes), temporarily 

storing and releasing sediment along their trajectory (Jerolmack & Mohrig, 2005). The 

dimensions and regular spacing of these bedforms within fluvial systems has also been found 

to be autogenically controlled (McElroy & Mohrig 2009; Ganti et al., 2011; Faulkner et al., 

2016). On a channel scale, fluvial systems migrate gradually through time via simultaneous 

bank erosion and bar deposition (Lauer & Parker, 2008). This causes local influxes of 

floodplain stored sediment into the trunk channel (Darby et al., 2002), reactivating and eroding 

regions of the floodplain previously in stasis (Tipper, 2015). The rate of river migration can 

range from less than 0.5 metres to more than 50 metres per year (Greenberg & Ganti, 2024), 

and hence can cause dramatic evolution of the fluvial system over decades. On a landscape 

scale, rivers can be relocated to an entirely different position on the floodplain by channel 

avulsion, triggered by landscape instability (Hajek & Straub, 2017). As sediment is confined 

to channelized corridors, in channel sedimentation rates exceed those of the surrounding 

floodplain. Hence, aggradation in channels allows them to become topographically perched, 

leading to avulsion to restabilise the system (Mohrig et al., 2000). The avulsion timescale, Ta, 

can be estimated as the time for the river to aggrade to one channel depth (Jerolmack & Mohrig, 

2007). Estimated avulsion timescales for modern rivers can be in the range of 101 (Kosi River, 

India) to 103 (Mississippi River) (Slingerland & Smith; 2004). Alongside variations in space 
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and time, sediment storage potential within fluvial systems will vary depending on the 

efficiency of sediment transport. For example, sediment transported as bedload will experience 

much longer storage times than its suspended sediment counterpart, which may experience near 

linear sediment transport (Kleinhans & van Rijn, 2002). Furthermore, the competence and 

capacity of the river will influence sediment transport thresholds and hence sediment storage 

potential (Church, 2002; Curtis et al., 2010). A river with high competence and/or capacity will 

convey sediment over a large range of grain sizes more efficiently down system, decreasing 

sediment storage potential (Grant, 2012). 

As channelized clastic systems are characterised by measurable and predictable 

morphodynamic relationships (Colombera et al., 2017; Paola et al., 2006; Rodriguez-Iturbe et 

al., 1992), fluvial systems have offer quantitative understanding as to the link between 

sediment flux signals, Earth surface processes and stratigraphic products. Three primary 

impediments to signal storage arise from sediment transport dynamics within channelized 

systems and limit the storage and recovery of environmental signals from landscapes and strata. 

In this section, each impediment is reviewed and highlight the respective quantitative 

thresholds that can predict under what conditions sediment supply signals are transferred to the 

stratigraphic record. 

1.4.1. Landscape diffusion 

Firstly, deterministic models of Earth surface dynamics within STSs predict the diffusion of 

environmental signals through space and time (Paola et al., 1992). The diffusion framework 

has been applied to a range of STSs, for example, alluvial fans, deltas, coastlines, hillslopes 

and fluvial systems (Flemings & Jordan, 1989; Paola, 2000; Straub et al., 2020). This 

framework is used to describe the response and evolution of surface topography to a change in 

boundary conditions that influence the flux of sediment provided to a basin (Paola et al., 1992), 

where landscape equilibrium is achieved when elevation is stable as a function of time. For a 

system of defined length, the time required for a landscape to reach a new equilibrium state is 

known as the basin response time, or equilibrium timescale, (Paola et al., 1992; Paola, 2000) 

which scales as:  

𝑇𝑒𝑞 =  
𝐿2

𝑣
 

Where L is system length and v is diffusivity. For natural fluvial systems, estimates of Teq tend 

to span 105-106 years (Paola et al., 1992; Dade & Friend, 1998; Castelltort & Van Den 
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Driessche, 2003). The diffusion coefficient, v, captures the specific properties of a STS and 

hence requires a unique set of parameters per landscape which carries considerable amounts of 

uncertainty (Paola 2000). To reduce the uncertainty and make the equilibrium timescale 

measurable from landscape quantities, Métivier & Gaudeme (1999) reformulated this equation 

as follows: 

𝑇𝑒𝑞 =  
𝐿𝑊𝐻𝑚𝑎𝑥

𝑄𝑠
 

Where W is the width of the floodplain, Hmax is the elevation difference from the start to the 

end of the system and Qs is volumetric sediment discharge.  

The equilibrium timescale can be utilised as a temporal threshold for the propagation and 

preservation of sediment flux signals within STSs. When the periodicity of an input signal is 

less than Teq, the input signal is substantially buffered by a landscape (Métivier, 1999; McNab 

et al., 2023), as a complete new topographic equilibrium is unlikely to be attained. Conversely, 

when the signal periodicity is greater than Teq, the system will reach equilibrium with forcing 

conditions allowing signals to propagate down-system (Duller et al., 2019; McNab et al., 

2023).  

Landscape buffering processes reduce the amplitude of the recorded signal relative to the 

known input signal and increase the timescale over which system response is observed relative 

to the timescale of the actual perturbation. This results in the smoothing out high frequency 

signals during propagation (Allen, 2008; Armitage et al., 2013; Covault et al., 2013; East et 

al., 2015; Forzoni et al., 2014; McNab et al., 2023; Pizzuto et al., 2017; Romans et al., 2016; 

Spohn et al., 2021; Straub et al., 2020). Consequently, this results in either no identifiable 

signal at the system outlet or a transformed signal with both a modified period (time lagged) 

and amplitude (decreased) (Métivier & Gaudemer, 1999; Hoffmann, 2015). The buffering of 

sediment flux signals occurs due to the redistribution of sediment mass over the Earths surface 

over a range of spatiotemporal scales which includes the simultaneous, cumulative effects of 

intermittent sediment transport and sediment storage within a landscape (Fryirs et al., 2007). 

The distribution of sediment storage sites can provide key information regarding the buffering 

capacity of a system (Castelltort & Van Den Driessche, 2003; Armitage et al., 2013; Forzoni 

et al., 2014). For example intermontane valley fills (e.g. floodplains, alluvial fans and terraces) 

have been described as important landforms which decouple hillslopes from fluvial processes 

and hence buffer externally derived sediment flux signals within mountain catchments (Blöthe 
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& Korup, 2013; Clarke, 2015; Fryirs et al., 2007; Knight & Harrison, 2013; Pizzuto et al., 

2017). The potential for signal buffering increases with system length; the longer the STS, the 

longer the time and the more sediment required for equilibrium to be achieved, hence 

increasing sediment delivery times. This was quantified by Castelltort & Van Den Driessche 

(2003); the attenuation of the amplitude of Milankovitch scale sediment supply signals over all 

periodicities (20 kyr, 40 kyr and 100 kyr) means signal transfer is more probable within short 

STSs or the proximal region of larger systems.  

However, the representation of STSs as diffusive does not allow for the incorporation of 

stochastic sediment transport as a result of autogenic processes, as the lateral stochastic system 

dynamics present are averaged over space and time (Hajek & Straub, 2017; Métivier, 1999; 

Paola, 2016; Phillips & Jerolmack, 2016; Simpson & Castelltort, 2012; Toby et al., 2022). As 

autogenic processes have no role in signal propagation and storage within a diffusional 

framework, this can lead to a loss of predictive capability when evaluating the limits of 

environmental signal propagation across the Earth’s surface, as only long timescale signals can 

be assessed in relation to Teq (Toby et al., 2022). However, autogenic processes are inherent to 

3D STSs (Toby et al., 2022) and therefore any theoretical framework must incorporate 

stochastic dynamics. For example, Van De Wiel & Coulthard (2010) found that the non-

linearity of bedload fluctuations is indicative of self-organised criticality (SOC), meaning that 

sediment flux from these systems is unpredictable. Therefore, attributing individual sediment 

flux peaks to environmental perturbations is impossible, as these peaks may represent 

autogenic signals generated by internal system dynamics.  

1.4.2. Signal shredding 

Alongside the attenuation of signals with distance from the source, environmental signals can 

be smeared through both space and time due to sediment storage and release as a result of 

autogenic processes (Jerolmack & Paola, 2010; Van De Wiel & Coulthard, 2010; Romans et 

al., 2016; Toby et al., 2019; Straub et al., 2020; Tofelde et al., 2021). Motivated by fluid 

velocity fluctuations in turbulent flows, Jerolmack & Paola (2010) advanced on this work to 

quantify how stochastic sediment transport as a result of autogenic processes can influence the 

propagation and preservation of environmental signals across landscapes. Jerolmack & Paola 

(2010) outlined a concept called ‘signal shredding’, defined as: ‘the smearing of an input signal 

over a range of space and timescales by stochastic processes such that an input signal is not 

detectable at the outlet of a system’. Shredding was hypothesised to occur where the input 
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period of the signal is small in comparison to the magnitude of morphodynamic turbulence 

within the system.  

Jerolmack & Paola (2010) utilised a numerical model of an avalanching rice pile to demonstrate 

this theory. Using a suite of numerical models, it was demonstrated that the degree of signal 

alteration during propagation is dependent on the maximum spatiotemporal scales of autogenic 

processes within a system. Using this theory, they defined a timescale, Tx, which scaled with 

the largest autogenic sediment transport fluctuations: 

𝑇𝑥~ 
𝐿2

𝑞0
 

Where L is the length of the system and q0 is the rate of sediment input. The conceptual utility 

of this timescale is that environmental signals with periodicity greater than Tx pass through a 

transport system unmodified and are recorded in the output flux, whereas those with periods 

less than Tx are shredded prior to recording. However, a second scenario exists in which 

sediment flux signals can survive shredding; when the amplitude of the input signal is greater 

than the maximum autogenic sediment release event. This threshold is defined as:  

𝑀 ~ 𝐿2𝑆𝑐 

Where Sc is the critical threshold slope, which at field scales approximates the volume of 

sediment required to be eroded for channel generation post avulsion (M = LHmax). 

The theory of Jerolmack & Paola (2010) provided insight into the ability of autogenic processes 

to shred external environmental signals and quantified two thresholds for the preservation of 

environmental signals within landscapes defined by the spatiotemporal limits of autogenic 

processes (i.e. the duration and magnitude of noise within a STS). Since the development of 

this framework, other models and field observations have demonstrated that autogenic 

processes can shred environmental signals within landscapes (Lazarus et al., 2019). However, 

the framework of Jerolmack & Paola does not extend into signal propagation and preservation 

in stratigraphy, as signal loss due to vertical cut and fill processes is not included. The storage 

of environmental signals in stratigraphy requires sediment to be buried below the autogenic 

reworking depth. This means that an environmental signal may be preserved in reference to the 

surface process signal shredder, but may be shredded by reworking of previously deposited 

sediments and hence not be recorded in stratigraphy.  
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To extend the work of Jerolmack & Paola, (2010), Toby et al., (2019) developed a quantitative 

framework that can successfully predict the conditions necessary for the stratigraphic storage 

of sediment supply signals. Within landscapes, this was found to be an individual temporal 

threshold (Tx). However, Toby et al., (2019) proposed this threshold for stratigraphy was a 

time-dependent magnitude threshold. This threshold is set by the maximum scale of autogenic 

processes (sediment storage, bypass and release) over the timescale of interest, defined in this 

study by a change in the volume of terrestrial delta deposits as a function of measurement 

duration. Using this framework, periodicities of signals that produce stratigraphic signatures 

can be differentiated from those that do not induce a stratigraphic response. However, it is also 

recognised that short-period input signals can induce a surface response, but are not of 

sufficient duration or magnitude to induce a preservable stratigraphic response. Whilst previous 

work demonstrates that only the the longest or largest signals should be preserved within 

landscapes and strata (Jerolmack & Paola, 2010; Foreman & Straub, 2017; Burgess et al., 

2019), Toby et al., (2019) show the potential for high-frequency input signals to be faithfully 

recorded. This framework suggests that commonly discussed sediment supply signals resulting 

from Milankovitch scale orbital forcing or punctuated tectonic uplift fall very close to the 

proposed threshold. Therefore, it is suggested that extraction of these environmental signals 

from a time series of stratigraphic measurables generated from common field exposure and 

methods is challenging (Toby et al., 2019).  

Whilst the deterministic and stochastic signal propagation frameworks are generally considered 

separately, it has been highlighted that parallels exist between the two. Given that both 

timescales emerge due to the long-term spatial distribution of sediment deposition, it is 

hypothesised that Teq and the compensation timescale (Tc) are equal within a factor of 2 (Straub 

et al., 2020; Toby et al., 2022). Therefore, when both these timescales are exceeded, basin-

wide topography and strata are set by allogenic forcing (Straub et al., 2020; Toby et al., 2022). 

In terms of signal propagation and preservation, the exchange of sediment over timescales 

smaller than Teq must occur through stochastic processes such as channel migration and 

avulsion. High-frequency sediment flux signals will be shredded by autogenic processes, 

however, signals with periodicity that exceed the thresholds for shredding will be buffered in 

a deterministic sense unless the period of the input signal exceeds Teq (Straub et al., 2020; Toby 

et al., 2022). 
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1.4.3. Stratigraphic incompleteness 

Signals with periodicity that exceed the thresholds for signal shredding (e.g. Jerolmack & 

Paola, 2010; Toby et al., 2019) are not definitively preserved within stratigraphy due to the 

effects of stratigraphic incompleteness. Stratigraphers have long known that all stratigraphic 

sections are incomplete (Hutton, 1788; Ager, 1973; Sadler, 1981), as hiatuses permeate 

sedimentary records often with unknown duration. These hiatuses occur over a variety of 

spatiotemporal scales from laminae to basin scale unconformities, which reduce the 

preservation of time within stratigraphic sections (Sadler, 1981; Schumer & Jerolmack, 2009; 

Foreman & Straub, 2017; Davies et al., 2019). Stratigraphic incompleteness is not just the 

result of erosion, but rather the combined effect of unsteady geomorphic processes causing 

variations in the frequency and magnitude of deposition, stasis and erosion due to internal 

system dynamics (i.e. autogenic processes) (Hajek & Straub, 2017; Kim & Jerolmack, 2008; 

Straub et al., 2020; Straub & Foreman, 2018; Tipper, 2015). Autogenic reorganization of STSs 

causes wide areas of landscapes to be in stasis at one time (Ganti et al., 2011; Tipper, 2015; 

Hajek & Straub, 2017), which coupled with periods of erosion leaves subtle hiatal surfaces 

within strata that in many cases can be difficult to identify (Sadler, 1981; Strauss & Sadler, 

1989; Trampush & Hajek, 2017; Boulesteix et al., 2019; Straub et al., 2020). Therefore, the 

more intermittent the STS, the greater the opportunity for long-term hiatuses to form 

(Jerolmack & Sadler, 2007; Ganti et al., 2020).  

Stratigraphic incompleteness has further consequences for the detection of environmental 

signals from a time series of stratigraphic measurables (Romans & Graham, 2013), and raises 

fundamental questions regarding the reliability of strata as an archive of palaeo-Earth surface 

processes (Kemp, 2012; Hilgen et al., 2015; Foreman & Straub, 2017; Trampush & Hajek, 

2017; Duller et al., 2019; Straub et al., 2020; Tofelde et al., 2021). The reconstruction of 

environmental signals from strata remains challenging even from a temporally complete 

stratigraphic record (Jerolmack & Paola, 2010; Toby et al., 2019; Straub et al., 2020), hence 

stratigraphic incompleteness can only hinder the reconstruction of environmental signals 

further. Stratigraphic dating limits means that sediment age is often assigned by linear 

interpolation between dated horizons (Abels et al., 2010; Ramos-Vázquez et al., 2017), 

providing additional challenges to the incompleteness problem by distorting the apparent 

representation of time in strata, relative to true time (Barefoot et al., 2023). The uneven 

representation of time in strata can distort even relatively simple input signals within a time 

series rendering them undetectable in the output flux. Trampush & Hajek, (2017) demonstrated 
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the significant alteration of a simple geochemical signal associated with the Paleocene-Eocene 

Thermal Maximum (PETM) as a result of stratigraphic incompleteness. The apparent period 

and amplitude of the PETM event preserved within synthetic sections differed substantially 

from the input signal where in the most extreme cases, the record failed to record any evidence 

of this extreme climate event.   

As the uneven preservation of time can warp the representation of sediment flux signals in 

stratigraphy, the scientific community has focused efforts on constraining the timescale of 

discretization required to obtain a complete stratigraphic record and the signal duration 

necessary for confident signal extraction from proxy records. A first-order control on the 

incompleteness of the stratigraphic record relates to the timescales over which the record is 

discretized (Sadler, 1981; Sadler & Strauss, 1990). The durations of stratigraphic hiatuses 

within both numerical and physical experiments have been found to be heavy-tailed, where the 

chance of an exceptionally long hiatus increases with the duration of observation (Schumer & 

Jerolmack, 2009; Ganti et al., 2011). This is because, over increasingly long-time windows, 

lateral migration of channels allows for sedimentation patterns everywhere in the basin to be 

equal. The truncation timescale of this distribution is set by the compensation timescale, Tc; at 

this timescale, stratigraphy follows a predictable pattern of compensational stacking. Tc 

represents the maximum timescale of autogenic organization in stratigraphy and denotes the 

maximum time window over which channels can rework previously deposited sediments 

(Sheets et al., 2002; Ganti et al., 2011; Wang et al., 2011): 

𝑇𝑐 =  
𝑙

𝑟
 

Where l is the maximum vertical roughness, often equated to the maximum channel depth, 

Hmax, and r is the long-term aggradation rate. Up to Tc, a power law decay in deposition rate 

with measurement duration is observed. However, as measurement duration exceeds Tc, 

deposition rates become stable as the maximum autogenic timescale of the respective basin has 

been exceeded (Straub & Foreman, 2018). Therefore, Tc denotes the minimum discretization 

timescale necessary to obtain a complete stratigraphic record (Straub & Foreman, 2018).  

Motivated by the finding that stratigraphic incompleteness can warp periodic input signals e.g. 

Trampush & Hajek (2017), Foreman & Straub (2017) quantified the minimum periodicity of 

an input signal required for confident signal extraction from a proxy record, where they found 

that Tc also provides a threshold for faithful signal transfer. External environmental 
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perturbations with periodicity less than Tc cannot be recovered from individual sections without 

error and the potential for spurious signals. Once the periodicity of the perturbation exceeds Tc, 

sedimentary layers and associated proxies are available for sampling, however only when the 

periodicity is greater than 2Tc can the true signal be faithfully and consistently recovered from 

strata. This has significant implications for the preservation of high-frequency sediment flux 

signals within stratigraphy and demonstrates that only sufficiently long-duration signals should 

be preserved within a time series of stratigraphic measurables.  

Whilst incompleteness has known consequences for the reconstruction of environmental 

signals, the impact of incompleteness on the spectral record of autogenic processes is currently 

unknown. This will allow robust confidence limits for signal detectability within environmental 

measurables to be established. 

1.5. Structure and timescales of morphodynamic stochasticity in sediment transport 

systems 

The thresholds and frameworks for signal propagation and preservation presented in section 

1.3 (e.g. Foreman & Straub, 2017; Jerolmack & Paola, 2010; McNab et al., 2023; Toby et al., 

2019) are defined by the spatiotemporal scales of autogenic processes within the STS in 

question. Therefore, the accurate detection of statistically significant cycles from a time series 

hinges on our ability to resolve the structure of the natural variance generated by autogenic 

processes (Weedon, 2003; Vaughan et al., 2011; Meyers, 2012, 2019; Weedon et al., 2019). 

The most commonly used statistical approach for quantifying autogenic variability and 

detecting imposed periodicity is the method of power spectral analysis (Butt & Russell, 1999; 

Roering et al., 2001; Weedon, 2003; Aziz et al., 2008; Vaughan et al., 2011; Meyers, 2012, 

2019; Abels et al., 2013; Foreman & Straub, 2017; Hajek & Straub, 2017; Dunkley Jones et 

al., 2018; Toby et al., 2019; Burgess et al., 2019; Lazarus et al., 2019; Smith, 2020). This 

technique allows us to quantify the magnitude of autogenic variance as a function of frequency 

(‘spectral power’) (Weedon, 2003; Vaughan et al., 2011; Meyers, 2019), where the background 

structure of the power spectra provides insight into the style, strength and timescales of 

autogenic dynamics in STSs (Jerolmack & Paola, 2007; Hajek & Straub, 2017).  

The background structure of power spectra generated from a time series of environmental 

measurables is commonly found to be composed of red and white noise (Figure 1X). Red noise 

represents a simple stochastic process that is physically motivated by climatic and depositional 

system dynamics (Hasselmann, 1976; Sadler & Strauss, 1990; Weedon, 2003; Meyers, 2012). 
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In this thesis, red noise refers to the observation that spectral power increases as the frequency 

decreases; events are temporally correlated (Grumbacher et al., 1993) and larger-scale 

fluctuations have larger characteristic timescales. In terms of sediment flux events, this 

highlights the occurrence of individual sediment flux events which gradually increase in mass 

and hence duration. White noise represents Earth system components with a slower response 

time (Meyers, 2012), and refers to the observation that spectral power is constant with 

increasing frequency (Figure 1X); events show no correlation and the time series is stationary 

(Grumbacher et al., 1993). In terms of sediment flux events, this spectral regime highlights the 

occurrence of sediment flux events of all sizes and duration occurring randomly. Somewhat 

less regularly, blue noise is also found within some power spectra generated from 

environmental measurables (Fisher et al., 1985; Petchey, 2000; Scheuring & Zeöld, 2001; 

Hajek & Straub, 2017). Blue noise occurs beyond the largest spatiotemporal scales of 

stochasticity and refers to the observation that spectral power decreases as frequency decreases 

(Figure 1X); events are temporally anti-correlated. In terms of sediment flux events, this means 

that after the largest event size has occurred, an event of the same duration and magnitude is 

improbable.  Whilst the background structure of autogenic processes in different sediment 

transport routing segments may show similarity, the sediment transport processes that define 

the cause and extent of temporal correlation may vary. 
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Figure 1.3: Illustration of the structure of noise within power spectra. 

(A) Simplified diagrams highlighting the structure of noise found in natural systems. Red noise describes 

when spectral power decreases as frequency increases. White noise describes when power plateaus with 

frequency. Blue noise describes when power increases as frequency increases. The ‘periodic’ spectrum 

corresponds to a single peak at a given frequency. Adapted from Vaughan et al., (2011). (B) Example 

sediment flux time series highlighting the portions of the time series which contributes to generating the 

noise regimes seen within power spectra. Red noise is generated when sediment flux variations are 

consistently low, generating high frequency noise. White noise is generated when sediment flux events 

merge together; the onset of one event can trigger another event, increasing the duration and flux out 

of the system and causing randomness in event size. Blue noise is generated when a large sediment flux 

event occurs and is succeeded by much smaller flux events as the system regrades. This generates power 

spectra with a structure composed of red noise over short timescales, white noise over intermediate 

timescales and blue noise over long timescales. The breaks in spectral gradient (T1 and T2; vertical 

dashed lines) denote autogenic timescales within power spectra. Peaks in the power spectra linked to 

periodic signals can be differentiated from background noise by employing confidence levels. The 

spectrum shows a peak at 100s. The 90%, 95% and 99% confidence levels are shown (red dashed lines), 

and the spectral peak breeches the 99% confidence level.  
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The spectral gradient breaks between the various spectral regimes have been found to denote 

characteristic autogenic timescales (Figure 1.3) which provide the thresholds for signal 

propagation and preservation. Jerolmack & Paola (2007) found the spectral transition from red 

noise to white noise occurs at the maximum avulsion timescale (the longest timescale between 

avulsion events) within a numerical delta system. Similarly, Jerolmack & Paola (2010) defined 

Tx as the spectral transition between red noise and white noise within a numerical rice pile. 

Also, Hajek & Straub (2017) found the spectral transition from red noise to blue noise within 

an experimental delta to occur at the compensation timescale, Tc. This means that signals with 

periodicity that coincide with the timescales over which temporal correlation (red noise) occurs 

in a STS are likely to not be preserved in the output flux (e.g. the signals are shredded; 

Jerolmack & Paola 2010). Defining the spatiotemporal scales of morphodynamic stochasticity 

is critical to applying signal transfer thresholds to field-scale systems. However, at present, the 

theory to fully predict what a characteristic distribution shape should be for a given landscape 

under different boundary conditions is insufficient. Hence, it is critical to characterise the 

timescales and magnitude of autogenic fluctuations in landscapes with differing levels of 

stochasticity and understand how this distribution is preserved in strata. 

Strictly periodic processes (e.g. those that repeat perfectly over a defined periodicity, e.g. 

environmental signals) produce a single narrow peak in a power spectrum (Figure 1X), where 

all the power is concentrated at one frequency (Vaughan et al., 2011). Typically, in climate 

analysis, these are strongest within the Milankovitch bands. However, power spectra can be 

poor estimators of periodic processes when generated from a time series containing a strong 

random component, as power spectra generated from purely stochastic processes can contain 

narrow peaks that are difficult to distinguish from periodic processes. Therefore, to detect 

periodic signals, a frequency-dependent threshold is generated above which a random 

fluctuation in the power spectra is unlikely, namely confidence levels (Figure 1X). The 

autoregressive lag-1 (AR1) stochastic noise model (Gilman et al., 1963) is the most commonly 

applied spectral estimation method applied for evaluating the presence of periodic processes in 

power spectra due to its simplicity (Weedon, 2003; Meyers, 2019). However, if the power 

spectra produced from real data do not share the same structure as an AR1 process, then 

recovery of environmental signals is fraught with error and spurious signals (peaks that breech 

the confidence level but arise due to stochastic variability rather than periodic processes). If 

confidence levels are to be meaningful, they must accurately reflect the background structure 

of the power spectra and should not artificially favour any region of the spectrum (Vaughan et 
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al., 2011; Meyers, 2012). As numerous studies aim to resolve allogenic signals that may have 

similar temporal and/or spatial scales to autogenic processes (e.g. Milankovitch scale orbital 

forcing; Aziz et al., 2008; Abels et al., 2013; Hilgen et al., 2015), this highlights the 

requirement to define the temporal structure of autogenic processes and develop a model with 

a strong statistical fit to the spectral geometry, which will allow the accurate detection of 

environmental signals over all autogenic timescales.  

1.6. Utilising physical and numerical experiments to study autogenic dynamics and 

signal propagation.  

Theory and thresholds for the propagation and preservation of environmental signals have been 

developed using various numerical and physical scale models of STSs. This thesis utilises a 

suite of physical rice pile experiments and numerical sandpile experiments to test hypotheses 

on the propagation and preservation of periodic sediment supply signals across landscapes. As 

the timescales required for the largest components of STSs (e.g. rivers or delta systems) to self-

organise are beyond the timescales of human observation and modern instrumental records, 

field scale systems are generally unsuitable targets to fully characterise the spectral structure 

of autogenic processes and the interaction between autogenic and allogenic processes (Paola et 

al., 2009). To overcome this, physical and numerical experiments are utilised where boundary 

conditions and data collection resolution can be precisely defined. 

One such genre of experiment, pertinent to this thesis, is granular avalanching experiments, 

encompassing both sand and rice piles. More than three decades ago, Bak et al., (1987) 

proposed the theory of SOC as an explanation for the origin of spatiotemporal variance in 

natural systems using a numerical granular pile. They further observed how the addition of a 

singular grain could cause a multitude of collapse events on the pile whose size could vary 

from one cell in the model to the full length of the pile. The magnitude-frequency distribution 

of the collapse events on the pile was found to follow an inverse power law. After the largest 

collapse event, the system would self-organise to return to this critical threshold. SOC has been 

used to define the dynamics in many environmental systems, including but not limited to, 

earthquakes (Godano et al., 1993), forest fires (Clar et al., 1996), river meandering (Stølum, 

1996), bank failures (Fonstad & Marcus, 2003; Croke et al., 2015), riffle-pool sequences and 

other fluvial bedforms (Clifford, 1993), aeolian bedforms (Anderson, 1990) and sediment yield 

(De Boer, 2001).  
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Motivated by this study, numerical granular avalanching systems have since been utilised to 

further understand the fundamental behaviour of sandpiles (Hwa & Kardar, 1992; Christensen 

et al., 1996; Frette et al., 1996; Malthe-Sørenssen et al., 1999; Manna, 1999). Hwa & Kardar 

(1992) advanced on the work of Bak et al., (1987) to quantify the underlying sediment transport 

mechanisms responsible for producing SOC in sandpiles. Power spectra generated from a time 

series of sediment flux from a numerical sandpile exhibit three spectral regimes, where each 

regime denotes different sediment transport mechanics. Firstly, the correlated region over short 

timescales denotes isolated avalanche events with an upper cut-off time equal to the maximum 

duration of one avalanche. Secondly, over intermediate timescales, an uncorrelated regime 

persists, which occurs due to the interaction (merging) of avalanches. Thirdly, over the longest 

timescales an anti-correlated regime persists where the sandpile encounters avalanches on the 

order of system size. The existence of these system scale events is a unique feature of systems 

with threshold instabilities (Hwa & Kardar 1992). Jerolmack & Paola (2010) advanced on the 

theory presented by Hwa & Kardar (1992) with an application to understanding signal 

propagation through STSs, from which they devised their signal shredding framework 

(mentioned in section 1.3.2).  

Rice piles are able to elucidate the nature of autogenic processes and offer a rich suite of 

autogenic statistics that arise from sediment storage and release along a 1D transport path, 

analogous to sediment transport along a 2D transport path in field scale systems. Hence these 

systems provide a basis from which STSs and strata can be understood. However, previous 

theory has been developed solely from numerical granular systems, which evolve in relation to 

user-defined thresholds which control the propagation of particles through the system rather 

than natural physical thresholds. Furthermore, numerical granular systems have strict sediment 

transport thresholds, where grains cannot leave the system without experiencing at least 

temporary storage. In physical systems, grains have the capacity to propagate down-system 

with minimal storage, allowing the full range of sediment transport mechanics to occur (Benda 

& Dunne, 1997; Ganti et al., 2013). These theories are yet to be tested on a physical rice pile, 

which does not suffer from these limitations.  

1.7. Research questions 

The aim of this thesis is to understand the nature of autogenic processes within STSs and 

quantify how these processes influence the ability of landscapes and stratigraphy to record 

evidence of external sediment flux signals. Physical and numerical granular avalanching 
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experiments were used to address this aim by using time series analysis techniques to 

investigate the following research questions: 

 

Research Question 1: What is the spectral structure of autogenic processes in a STS and how 

do autogenic timescales control signal propagation and preservation? 

Autogenic processes operating within all STS control the transport of sediment from source to 

sink, hence to understand signal preservation potential, the nature of autogenic processes must 

first be quantified. The duration and magnitude of stochastic Earth surface processes, relative 

to environmental signals, impacts our ability to separate signal from noise in landscapes and 

strata. Therefore, quantifying the spatiotemporal limits of autogenic processes can provide 

insight into the thresholds for signals in geomorphic environments and strata. Research 

question 1 is addressed by the following objectives:  

Objective 1.1: To characterise the full temporal structure and the timescales of 

autogenic processes within a physical rice pile. 

Objective 1.2: To delimit the scaling controls on the temporal structure and autogenic 

timescales.  

Objective 1.3: To define thresholds for the degradation and detectability of external 

environmental signals over the full range of autogenic timescales.  

 

Research Question 2: How does stratigraphic incompleteness influence the preserved 

structure of autogenic processes and influence signal detectability? 

Records of stratigraphic measurables measured in the field from which power spectra are 

generated are temporally incomplete over a range of scales, due to both stasis and erosion as a 

result of autogenic processes removing time from stratigraphic sections. Quantifying the 

impact of incompleteness on the preservation of paleo Earth surface processes, and hence the 

recovery of environmental signals, provides understanding as to which records best preserve 

evidence of paleoenvironmental variability. Research question 2 is addressed by the following 

objectives: 
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Objective 2.1: To investigate how incompleteness over varying scales influences the 

preservation of the full temporal structure and timescales of autogenic processes in 

stratigraphy.  

Objective 2.2: To investigate how sampling resolution and interpolation of an 

incomplete time series influences the record of surface processes and autogenic 

timescales preserved.  

Objective 2.3: To quantify the effect of incompleteness and interpolation on the 

detectability of periodic sediment flux signals over the full range of autogenic 

timescales. 

 

Research Question 3: How does the magnitude of autogenic noise within a STS influence the 

degradation and detectability of environmental signals? 

The duration and magnitude of sediment storage and release varies between geomorphic 

environments, hence the magnitude of autogenic noise, and the potential for signal detection, 

varies spatially within landscapes. Understanding the sensitivity of STSs which promote more 

continuous, faster sediment transport to environmental signals can provide insight into which 

STS segments may best preserve evidence of high frequency environmental change. Research 

question 3 is addressed by the following objectives: 

Objective 3.1: To compare the full temporal structure and the timescales of autogenic 

processes within a numerical granular pile to that of the physical rice pile. 

Objective 3.2: To explore how signal degradation and detectability is influenced by the 

magnitude of autogenic noise.  

Objective 3.3: To investigate the occurrence of resonance within STS. 

Objective 3.4: To evaluate the use of DEM’s to simulate physical experiments.  

1.8. Thesis structure  

This thesis is presented as a series of academic papers. Therefore Chapter 3-5 present methods, 

results, contextual literature and discussion which refer to one or more of the research questions 

outlined in section 1.7, so there is inevitable repetition of key concepts throughout this thesis. 

This thesis includes three manuscripts, but Chapter 3 and Chapter 4 have been published; hence 
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these chapters have been modified to keep with the formatting of the rest of the thesis. The 

status of each manuscript and author contributions are stated in section 1.9. All references have 

been grouped into an ensemble reference list at the end of this thesis. Experimental metadata 

are given in Appendix 1; these are available from the Harvard Dataverse online repository 

(Griffin & Straub 2023). A list of symbols and acronyms is given in Appendix 2. 

Chapter 1 provides an introduction, overview and rationale for this thesis, illustrating the wider 

context and a broad overview of the autogenic and allogenic controls on STSs. Most 

importantly, this chapter introduced the impediments to environmental signal propagation and 

preservation in both landscapes and strata caused by stochastic autogenic processes. The 

overall aim of this thesis, and individual research questions are outlined.  

Chapter 2 outlines the theoretical background to the experiments and the methodology utilised 

in this thesis. The physical rice pile apparatus is outlined, and the calibration experiments and 

results are explained. The set-up of the discrete element model (DEM) utilised for the 

numerical granular experiments is also outlined. Finally, an overview of the time series analysis 

techniques used throughout this thesis are given.  

Chapter 3 addresses research question 1. This paper utilises a physical avalanching rice pile to 

characterise the temporal structure of autogenic processes within STS and introduces a new 

theoretical framework that utilises key autogenic timescales to set temporal limits on the 

degradation and detection of sediment flux signals. 

Chapter 4 addresses research question 2. This paper utilises the suite of physical rice pile 

experiments presented in Chapter 3, from which time is systematically removed to quantify the 

implications of incompleteness and imperfect sampling. From this, a theoretical framework is 

developed that enables scientists to both predict the detectability of a particular environmental 

signal and reconstruct signal properties using an estimate of completeness. 

Chapter 5 addresses research question 3. This paper utilises a suite of numerical granular pile 

experiments, where the sandpile is generated as a discrete element model and utilises spherical 

grains to model systems with a high concentration of suspended sediment. The results of the 

numerical system are compared to the physical rice pile to show how the magnitude of storage 

and release processes operating within STSs controls the degradation and detectability of 

environmental signals. 
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Together, Chapter 3 to 5 provide a thorough understanding of the nature of autogenic processes 

operating within the Earth’s surface and their controls on the propagation, degradation and 

detection of environmental signals thesis.   

Chapter 6 concludes the thesis by summarising the results of the individual papers (Chapters 3 

to 5), synthesising these in reference to the original aim of this thesis and provides an extended 

discussion on the wider implications of the research and avenues for future work.  

1.8.1. Publication status of the chapters 

Chapter 3: Griffin, C., Duller, R.A., & Straub, K.M (2023).  The degradation and detection 

of environmental signals in sediment transport systems. Science Advances, v. 9 (44), p. 1-11, 

doi/10/1126/sciadv.adi8046 

 

Status: Published in Science Advances 

 

Submitted: 21.08.2023 

Published: 04.11.2023 

The author contributions to this chapter are as follows: 

R.A.D and K.M.S conceived the initial idea of the study 

C.G. lead the development of the experimental matrix with input from R.A.D and K.M.S 

C.G. and K.M.S. ran the suite of rice pile experiments.  

All authors contributed to the data analysis and interpretations 

C.G. wrote the manuscript with edits provided by R.A.D and K.M.S 

C.G. revised the manuscript after review with edits provided by R.A.S and K.M.S 

 

Chapter 4: Griffin., C., Duller, R.A., & Straub, K.M (2024). The incomplete record of autogenic 

processes sets limits on signal detectability. Journal of Geophysical Research: Earth Surface, v 129 (4), 

e2023JF007538 

 

Status: Published in JGR: Earth Surface 

Submitted: 14.11.2023 

Published: 01.04.2024 

The author contributions to this chapter are as follows: 
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C.G. conceived the initial idea of the study 

C.G. lead the development of the experimental matrix with input from R.A.D and K.M.S 

C.G. and K.M.S. ran the suite of rice pile experiments.  

All authors contributed to the data analysis and interpretations 

C.G. wrote the manuscript with edits provided by R.A.D and K.M.S 

 

Chapter 5: Turning the volume down: How does the magnitude of autogenic noise in a 

sediment transport system influence the preservation of environmental signals? 

Status: In preparation for submission to JGR: Earth Surface 

The author contributions to this chapter are as follows: 

C.G. conceived the initial idea of the study 

C.G. lead the development of the experimental matrix with input from J.E.H, R.A.D and 

K.M.S 

C.G. and J.E.H ran the suite of MFiX-DEM experiments.  

C.G. and K.MS. ran the suite of rice pile experiment  

All authors contributed to the data analysis and interpretations 

C.G. wrote the manuscript with edits provided by R.A.D and K.M.S 

1.8.2. Published datasets 

Griffin, C., Straub, K. M., 2023. Physical rice pile experiments, Harvard Dataverse 

All data can be accessed at 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SO5XJP under 

the dataset Rice Pile Experiments conducted at Tulane University in 2022. 

Author contributions to the experiments are as follows: 

Chloe Griffin and Kyle Straub – conducted experiments 

 

 

  

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SO5XJP
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2. Methods  

2.1. Experimental background 

To quantify the structure and timescales of autogenic processes and their control on the 

propagation of external environmental signals under controlled input conditions, this project 

primarily utilises a suite of physical rice pile experiments alongside a numerical granular 

avalanching system. Both granular piles offer the opportunity to quantify a rich suite of 

autogenic statistics due to sediment storage and release along a 1D path, analogous to sediment 

storage and release along a 2D path in field scale routing systems. Using a system with simple 

operation procedures, the interaction between autogenic processes and external environmental 

signals over measurable timescales can be studied.  

The work of Jerolmack & Paola, (2010) forms a basis for the experimental set up and matrix 

utilised in chapters 3 to 5. The structure and timescales of autogenic processes within the 

numerical avalanching rice pile were quantified using a time series of efflux, and used to 

propose a framework for the propagation and storage of environmental signals. From an 

experiment run under constant input rate, the structure of autogenic noise exhibits two regimes: 

temporal correlation (red noise) over short timescales transitioning to no correlation (white 

noise) over all succeeding timescales. The transition between the noise regimes denotes the 

saturation timescale Tx, which is noted to scale as L2/q0, where L is system length and q0 is 

input rate (Jerolmack & Paola, 2010). Tx was defined as an upper temporal limit on the ability 

of autogenic processes to “shred” environmental signals, where the conceptual utility of this is 

that signals with periods greater than Tx are recorded in the output flux, whereas signals with 

periods less than Tx are shredded. However, shredded signals can be detectable in the output if 

the signal has sufficient magnitude to overwhelm autogenic processes. This magnitude was 

proposed to scale as as M ~ L2Sc, where Sc is the critical threshold slope, which at field scales 

approximates the volume of sediment required to be eroded for channel generation post-

avulsion (Jerolmack & Paola, 2010).  

Current work on the nature of stochastic processes relies heavily on numerical models of 

avalanching systems (Hwa & Kardar, 1992; Frette et al., 1996; Jerolmack & Paola, 2010), 

however these systems rely on user-defined thresholds to control ‘grain’ propagation through 

the model domain and do not account for grain bypass. To overcome these limitations, this 

thesis utilises a physical rice pile which allows the natural dynamics of the system to be 

captured without user defined thresholds, and hence is more comparable to natural 
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environmental systems. Using the rice pile, the temporal structure of autogenic processes and 

the dynamics operating at different temporal scales control the propagation of environmental 

signals can be explored and evaluated. In a similar manner to Jerolmack & Paola (2010), signal 

periodicity was scaled relative to the autogenic timescales within the rice pile, and signal 

magnitude was scaled as percentages of the mean feed rate.  

Chapter 5 utilises a different methodology; a granular pile built as a discrete element model 

(DEM). The DEM system is built to the same geometry as the physical rice pile apparatus, and 

evolves by natural thresholds defined in the governing equations.  

2.2. Physical rice pile experiments 

The suite of rice pile experiments used in this thesis was conducted in the Sediment Dynamics 

Laboratory at Tulane University. The experimental apparatus is constructed of two vertical, 

parallel glass sheets 0.37m long, positioned 0.026m (Figure 2.1). Rice was fed to the pile from 

a dry particle feeder (Schenk Accurate) positioned 0.008m from the top surface, allowing a rice 

pile to form at a critical angle so that a dynamic topographic equilibrium was achieved. Rice 

input to the system was controlled at 1 second intervals via a computer connected to the 

sediment feeder which directly feeds the pile. Over the suite of experiments, influx was defined 

between the minimum and maximum range available on the sediment feeder (0 g s-1 and 0.78 

g s-1). Efflux was measured using an Ohaus EX12002 balance (accuracy and precision of 0.1 

grams) and recorded at approximately 1 s intervals. The balance has a maximum mass of 12 

kg, and all experiments were run until the balance was saturated. The dimensions of rice grains 

used in the experiments have a diameter of 0.0025±0.5 m, length of 0.008±0.5 m and a mass 

of 0.02 g (Table 2.1). The experimental set-up used here is similar to that of the physical rice 

pile of Frette et al., (1996). 
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Table 2.1: Characteristics of the rice used in the experiments 

 

 

 

 

 

 

To ensure the efflux data are driven only by the internal autogenic dynamics of the rice pile 

and not triggered by external noise, accelerations were analysed within the room when the 

sediment feeder was on and off, when sediment feeder was on but with no rice delivery, and 

when rice was delivered. Accelerations were measured using the Phyphox application on iPad, 

which records x, y and z accelerations at an increment of ~0.05 seconds to two significant digits 

of acceleration with SI units. The raw acceleration data, alongside power spectra of the time 

Name Par Excellence ® Premium Brown 

Rice 

Description Long grain, parboiled 

Length 0.008 ± 0.5 mm 

Width 2.5 ± 0.5 mm 

Aspect ratio 3.2 

Average mass 0.195 g 

No. density 0.78 ± 0.1 g/cm3 

Angle of repose 45-47° 

Figure 2.1: Schematic diagram of the physical rice pile experiment. 

Rice is fed directly from the sediment feeder between two glass sheets, separated to create a channel 

in which a rice pile can build. Input rate can be controlled through a computer interface. Efflux 

from the pile is measured cumulatively every second. Diagram not to scale. 
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series, were analysed to confirm external vibrations were not triggering avalanches, or that 

external vibrations did not occur at repeating frequencies (Figure 2.2) 

 

A series of experiments were conducted where rice was fed directly from the sediment feeder 

to the scale, to confirm high temporal control over the driving rates and cycles imposed. Power 

spectra were generated from the time series, which confirms white noise was present across all 

frequencies, except a spike in power if periodicity was imposed (Figure 2.3) 

Figure 2.2: Acceleration analysis to ensure the dynamics evident are inherent to the rice pile 

Left: Raw acceleration time series for the room only, the room and the sediment feeder with no rice pile 

and then over the duration of a full experiment. Right: Power spectra (generated using the Multi-taper 

(MTM) method with 2 tapers) of the acceleration time series for all three scenarios. Neither the raw 

time series nor power spectra show evidence of external noise occurring at repeating frequencies. 
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Figure 2.3: Time series and power spectra from three calibration experiments where rice was fed 

directly from the sediment feeder to the scale. 

Top: Cyclic experiment (periodicity 6s, amplitude 0.37 g s-1), with a signal evident at 6s. Middle: Cyclic 

experiment (periodicity 250s, amplitude 0.37 g s-1), with a signal evident at 250s. Cyclic experiment 

(periodicity 2000s, amplitude 0.37 g s-1), with a signal evident at 2000 s. 
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2.3. Discrete element modelling 

The numerical sandpile experiments were performed using MFiX: Multiphase Flow with 

Interphase eXchanges, created by the National Energy Technology Laboratory (NETL). MFiX 

(https://mfix.netl.doe.gov) is a general purpose open-source computer code, written in Fortran, 

used for modelling the hydrodynamics, heat transfer and chemical reactions in fluid-solids 

systems (Xu et al., 2017). MFiX can be used to model both fluids and solids using two-fluid 

models (TFM) continuum discrete methods (CDM) or discrete element models (DEM) from a 

single source code. The geometry and boundary conditions of the model can be controlled 

using the graphic user interface (GUI), allowing precise conditions to be established. The 

discrete element method (MFiX-DEM) was employed to generate the quasi-2D granular pile. 

The DEM can describe solid flows at a particular level, using a Eulerian reference frame for 

the continuum fluid and a Lagrangian discrete framework for the particle phase (Garg, 2013). 

DEM simulations can provide noteworthy insights that are unattainable through physical 

experimental methods (Marchelli & Di Felice, 2021).  

The DEM is a popular numerical technique, originally applied by Cundall, (1971), for 

computing the behavior of discrete particles. Individual, or clusters of, computational particles 

compose the solid phase of the DEM, where each individual particle trajectory can be tracked. 

The DEM resolves particle-particle collisions with small time steps, allowing a high level of 

accuracy at a cost of being computationally expensive (Garg et al., 2012; Li et al., 2012; Lu et 

al., 2022). The trajectory, linear and angular velocities of each particle are predicted through 

its Newtonian linear and rotational motion equations (Gopalakrishnan & Tafti, 2013; Marchelli 

& Di Felice, 2021). For simplicity, each particle is assumed to have the same density (ρ) and 

diameter (d). The motion of a particle (a) with mass (m), moment of inertia (I) and coordinate 

(r) are described by Newton’s equation for rigid body motion: 

𝑚 
𝑑2𝑟

𝑑𝑡2
= 𝐹𝑔,𝑎 + 𝐹𝑐,𝑎      (1) 

   𝐼 
𝑑𝜔𝑎

𝑑𝑡
=  𝑇𝑐𝑝              (2) 

Where 𝜔𝑎is the angular velocity of the particle and 𝑇𝑐𝑝 is the torque acting on the centre of 

mass of the particle. The terms on the right-hand side of equation 1 account for the gravitational 

force and the sum of individual contact forces exerted by every other particle in contact with 

particle a (Xu et al., 2017). 

https://mfix.netl.doe.gov/
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Collisions between individual particles or between the particle and the domain boundary are 

calculated using the soft-sphere approach of Cundall & Strack (1979). In the soft-sphere model, 

particle slightly overlap during contact (Marchelli & Di Felice 2021). In the MFiX-DEM, a 

linear spring dashpot soft sphere model is used to calculate the collisional force Fc,a. Here, the 

total contact force on an individual particle is the sum of the normal and tangential forces with 

its directly neighbouring particles (Xu et al., 2017). 

𝐹𝑐,𝑎 =  ∑ (
𝑏∈𝐵

𝐹𝑛,𝑎𝑏 + 𝐹𝑡,𝑎𝑏 

Where b is another particle in the model and B is the set of particles in contact with particle a 

(Xu et al., 2017). The full details of the governing equations and a detailed verification study 

of the MFiX-DEM was pursued by (Li et al., 2012).  

The granular pile was built using a 3D computational domain replicating the physical 

experiment, with dimensions of 0.3 x 0.3 x 0.02 m (Figure 2.4). The domain geometry is 

discretised by a non-uniform grid of 20, 10 and 5 cells in the X, Y and Z directions respectively. 

The walls of the domain utilise the non-slip boundary condition. Particles enter and leave the 

domain via a defined inlet and outlet region. The point-source inlet is generated as a 0.008 x 

0.006 m region, allowing only individual particles to enter the domain, increasing accuracy in 

the input rate. The inlet has a mass flow boundary condition and the outlet has a pressure 

outflow boundary condition which spans the open down-system end of the domain. Spherical 

grains with a diameter and density of 0.003 m and 1500 kg m-3 respectively are used as the 

granular medium. The particle input parameters utilised in the DEM can be found in Table 2.2  

Grains are fed into the system from the inlet at the mass flow rate defined in the GUI. Input 

conditions to the system can be precisely controlled by defining an input rate in kg s-1. 
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Table 2.2: Particle properties utilised in the MFiX-DEM 

Particle Properties 

Diameter (m) 0.003 

Density (kg m-3) 1250 

Friction coefficient 0.7 

Normal spring constant (N/m) 100 

Spring norm/tan ratio 2/7 

Damping norm/tan ratio 0.5 

Coefficient of restitution 0.45 

 

To reduce the computational time and to ensure each model run started with a granular pile in 

dynamic equilibrium, an initial run was completed to pre-assign the particles. This run was 150 

seconds long, with a solid volume fraction of 0.1 and a mass flow rate of 0.01 kg s-1, inputting 

11,311 grains. At the end of the run, the particle coordinates were saved and velocities reset to 

0, generating an input file used in all the experiments in chapter 5. Although the particles are 

pre-assigned to the model domain, at the start of each run the model takes approximately 2000s 

to stabilise. The total model run time was set to 30,000 s, with the first 2000 s discounted.  

The DEM evolves under natural thresholds defined in the governing equations, which 

redistribute mass down the granular pile in the same manner as the physical rice pile system 

Figure 2.4: MFiX-DEM numerical granular pile domain 

MFiX-DEM domain built to the same geometry as the physical rice pile. Grains enter the pile 

through the inlet region at the up-system end, and can exit through the outlet region. Each of the 

11,311 particles in the model can be tracked via a coordinate axis system. 
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during the experiment. Efflux is not measured directly in the DEM; instead the number of 

particles in the model is differenced between each time step, generating an efflux time series 

over 28,000s. Throughout the model run, the evolution of the pile was monitored by saving 

data files at 0.001 second intervals. The data saved in the output files includes: particle ID, X, 

Y and Z velocity and X, Y and Z coordinates for each particle present.  

The main limitation of the MFiX-DEM in regards to this thesis is that it is currently only 

capable of utilising spherical particles. Previous work utilising granular systems to understand 

self-organised criticality have utilised rice due to the high aspect ratio allowing interlocking 

behaviours and high intergranular friction which enables the system to become self-organised 

(Amaral & Lauritzen 1996). This interlocking behaviour is not possible with spherical grains, 

and previous experiments using rice with lower aspect ratios found the system did not evolve 

to a critical state (Frette et al., 1996). Although grain shape cannot be modified currently, 

physical parameters in the model can be adjusted to increase the similarity of the behaviours: 

the friction coefficient (FC) and the coefficient of restitution (CoR). Each parameter has a range 

between 0 and 1, allowing intergranular friction and the nature of the granular interactions to 

be controlled. The ideal combination of parameters for this system was found using a sensitivity 

analysis: a detailed analysis is presented in Chapter 5. 

2.4. Time series analysis 

The conventional procedure for detecting evidence of periodic cycles within a time series 

generates a power spectrum with confidence levels. This technique allows the magnitude of 

autogenic variance to be quantified as a function of frequency (‘spectral power’) (Weedon, 

2003; Meyers, 2019; Smith, 2023). The most common spectral estimation technique used to 

analyse climatic or depositional time series is the multi-taper method (MTM) of Thomson, 

(1982). The MTM generates an average power spectrum for an evenly sampled time series, 

where the spectrum does not prescribe an apriori model for the processes generating the time 

series. To achieve this, the time series is divided into a series of special data windows (tapers). 

These tapers individually suppress different parts of the time series to reduce the smearing of 

power across a range of frequencies that occurs when the signal being measured is not periodic 

in the sample interval. After each taper is applied, a power spectrum is generated from which 

an average spectrum is generated; this smooths out spurious irregularities and reduces the 

variance of the spectral estimation (Yiou et al., 1996). The greater the number of tapers applied 

the greater the reduction in variance, however, a high number of tapers can make spectral peaks 
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appear as flat-topped (quasi-periodic) rather than clear spikes (periodic) (Weedon, 2003). The 

MTM method represents a good method for producing spectral estimates with high-frequency 

resolution and low bias, which is essential in cases with low signal-to-noise ratios (Mann & 

Lees, 1996). As the MTM can only be applied to evenly sampled time series, Chapter 4 applies 

the Lomb-Scargle Periodogram (LSP) as the time series utilised is non-linear. The LSP is the 

best-known algorithm for detecting and characterising periodicity in unevenly sampled time 

series (VanderPlas, 2018). 

In the mixed power spectra encountered in stratigraphic analysis (where the spectrum is 

generated from both random and periodic components), spectral peaks related to the spectral 

background must be differentiated from statistically significant periodicity. Originally, 

statistically significant peaks within a power spectrum were picked out by eye however more 

recently an estimate of the spectral background structure has been generated from which 

associated confidence levels are estimated (Weedon, 2003). A confidence level of 95% implies 

that 5% of the data above this level is random variance (Vaughan et al., 2011). Below the 

confidence level data is assumed to be stochastic variance, whereas spectral peaks emerging 

above the confidence level are considered to be statistically significant periodicity (Weedon, 

2003). To make a statistical statement about the presence of imposed periodicity within the 

power spectra generated from the physical rice pile experimental confidence bands were 

generated from 25 realizations of a rice pile experiment run under a constant input rate. 

Numerical confidence bands were generated by constructing a spectral model and suite of 

associated confidence bands through adaptation of the bending power law (BPL) model 

(McHardy et al., 2004) to account for two spectral gradient breaks. 
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3. The degradation and detection of environmental signals in sediment transport 

systems 

This chapter has been published as: Griffin, C., Duller, R.A., & Straub, K.M (2023).  The 

degradation and detection of environmental signals in sediment transport systems. Science 

Advances, v. 9(44), p.1-11, doi/10/1126/sciadv.adi8046. 

Abstract 

Autogenic processes contribute noise to sediment transport systems that can degrade or mask 

externally-derived environmental signals and hinder our ability to reconstruct past 

environmental signals from landscapes and strata. To explore this further efflux is measured  

from a physical rice pile to ascertain the temporal structure of autogenic noise, and how this 

influences the degradation and detection of environmental signals. Our results reveal a tripartite 

temporal spectral structure segmented at two key autogenic timescales. The shorter autogenic 

timescale set limits on environmental signal degradation, while the longer autogenic timescale 

sets limits on environmental signal detection. This work establishes a framework that can be 

used to explore how autogenic processes interact with external environmental signals in field-

scale systems to influence their detectability. We anticipate that the temporal structure and 

associated timescales identified will arise from autogenic processes in numerous sediment 

transport systems. 

3.1. Introduction 

Sediment transport systems (STSs) are sensitive to external environmental perturbations; these 

can be natural (e.g. related to climatic or tectonic processes) or anthropogenic in origin (Gomez 

et al., 2007; Romans et al., 2016; East et al., 2018; Ibáñez et al., 2019; Straub et al., 2020). 

STSs respond and adjust to these perturbations in a number of ways and over a range of 

temporal and physical scales (Romans et al., 2016; Toby et al., 2019). A fundamental response 

of a STS to these perturbations is a variation in the generation of sediment supplied to the STS 

and transmitted down-system as an environmental signal (Straub et al., 2020; Tofelde et al., 

2021). These environmental sediment flux signals can generate geomorphic and stratigraphic 

signatures that allow for the reconstruction of past environmental perturbations (Castelltort et 

al., 2015; Mahon et al., 2015; Harries et al., 2019; Sharman et al., 2019; Straub et al., 2020; 

Tofelde et al., 2021) and provide insight into the response of landscapes to future 

environmental change (Knight & Harrison, 2013; Duller et al., 2019).  
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However environmental sediment flux signals can undergo varying degrees of modification 

during their propagation through STSs and to strata (Jerolmack & Paola, 2010). This is 

primarily due to episodes of sediment storage and release that occur along the length of STSs 

in a stochastic manner and are referred to as autogenic processes (Jerolmack & Paola, 2010; 

Romans et al., 2016; Hajek & Straub, 2017; Straub et al., 2020). Even under constant boundary 

conditions, autogenic processes induce sediment storage and release over a range of spatio-

temporal scales (Anderson & Konrad, 2019; Armitage et al., 2011; East et al., 2015; Hajek & 

Straub, 2017; Jerolmack, 2011; Kim & Jerolmack, 2008; Pelletier et al., 2015; Powell et al., 

2012; Vercruysse et al., 2017), from centimeter-scale bedforms migrating over seconds (Ganti 

et al., 2013; Leary & Ganti, 2020; Muto et al., 2007; Paola, 2016; Zlatanović et al., 2017) to 

delta lobes avulsing hundreds of kilometers over millennia (Brooke et al., 2022; Chadwick et 

al., 2020; Ganti et al., 2016; Paola, 2016). This stochasticity means that a one-to-one 

correlation between a singular or periodic environmental perturbation, and a sedimentary-

proxy record for the associated environmental sediment flux signal, is not guaranteed 

(Jerolmack & Paola, 2010; Foreman & Straub, 2017; Hajek & Straub, 2017; Straub et al., 

2020). Autogenic processes are a natural physical phenomenon that are ubiquitous across many 

landscapes and occur in the absence of external environmental perturbations (Hajek & Straub, 

2017; Swanson et al., 2019; Scheingross et al., 2020). Autogenic processes are commonly 

associated with a self-organised behavior of STSs over sufficiently long timescales (Swanson 

et al., 2019), where the time required for a STS to self-organise is scaled to the size of the 

system in question and the nature of the interactions between internal system components 

(Hajek & Straub, 2017). The self-organization of a physical system can be viewed as a 

statistical property (Phillips, 1999) and as a measurable property. Examples of the latter include 

the regular spacing of point bars in meandering rivers (Hajek & Straub, 2017), the size 

distribution of sediment storage and release events from a time series of sediment flux, or the 

organization of surface topography and strata (Dodds & Rothman, 2000; Paola, 2016).  

We note that many measurable attributes of STSs follow heavy-tailed distributions that are 

truncated at the upper end (e.g. the magnitude of erosional and depositional events, (Ganti et 

al., 2011). The shape of this distribution is determined by the specific transport mechanisms 

and depositional dynamics, and the upper truncation is due to the bounding effect of system 

size that sets a physical limit on the spatiotemporal scales of autogenic processes (Ganti et al., 

2011). In the broadest sense, self-organization is an emergent property of a system that can be 

used to make predictions about the overall behavior of a system (Hajek & Straub, 2017; 
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Phillips, 1999). However, autogenic processes also contribute noise to a STS in the form of 

autogenic sediment flux or ‘natural variability in sediment flux’ (Kim & Jerolmack, 2008; Van 

Dijk et al., 2009; Jerolmack & Paola, 2010; Van De Wiel & Coulthard, 2010; Ganti et al., 

2014; Castelltort et al., 2015; Paola, 2016; Romans et al., 2016; Hajek & Straub, 2017), which 

will also impart variability to strata (Burgess et al., 2019; Burgess, 2006; Foreman & Straub, 

2017; Kim & Jerolmack, 2008; Toby et al., 2019; Wang et al., 2021). This noise can severely 

limit the identification of an environmental sediment flux signal either by obscuring it, i.e. the 

power of autogenic noise is greater than the environmental signal itself (Morris et al., 2015); 

or by interacting with it to such an extent that no trace remains of the original signal (Li et al., 

2016; Simpson & Castelltort, 2012; Toby et al., 2019), i.e. the signal is shredded (sensu 34). 

These two mechanisms are in operation simultaneously and will act to reduce the detectability 

of environmental signals from a time-series of sediment flux. However, the concepts of signal 

shredding and detectability have become somewhat intertwined, where all undetectable signals 

are considered shredded (Jerolmack & Paola, 2010; Lazarus et al., 2019; Tofelde et al., 2021). 

The relationship between these concepts, and a framework to predict when signals are shredded 

and/or undetectable, is not yet established.  

To do this we use a physical rice pile as a rudimentary and idealised STS. Rice piles have 

previously been shown to exhibit a complex behavior (Bak et al., 1987; Frette et al., 1996) and 

are drawn upon to understand autogenic processes and environmental signal propagation 

through STSs (Jerolmack & Paola, 2010). The aim here is to characterise the full temporal 

structure of autogenic noise and associated timescales from a physical model; and to understand 

how the periodicity and amplitude of imposed environmental signal interacts with the 

autogenic noise. This will provide a robust theoretical framework that can be used as a starting 

point to explore the autogenic temporal structure of field-scale STSs and how this information 

can be used to generate confidence limits of environmental signal detectability and thresholds 

of signal shredding (Hajek & Straub, 2017) in STSs and associated strata. More broadly, this 

is crucial to the accurate reconstruction of past environmental signals and to our ability to 

predict how environmental signals will interact with STSs over a range of timescales to garner 

a detectable (or not) response. 

3.2. Theoretical background 

The timescale required for the largest landscape components of STS (e.g. rivers or delta 

systems) to self-organise is beyond the timescales of human observation and modern 
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instrumental records (Paola et al., 2009), and so field scale systems are unsuitable targets to 

fully characterise the autogenic structure of STS and the interaction of autogenic processes 

with environmental signals. To overcome this, physical experiments and numerical models are 

used (Paola et al., 2009). One such numerical experiment, and pertinent here, is a numerical 

1D avalanching rice pile, which has offered key insights into the structure of stochastic noise 

(Hwa & Kardar, 1992) and the role of autogenic processes in environmental signal shredding 

(Jerolmack & Paola, 2010). The 1D numerical rice pile models, although rudimentary, 

elucidate the nature of autogenic processes and provide a basis from which natural STSs and 

strata can be understood (Foreman & Straub, 2017; Hajek & Straub, 2017; Toby et al., 2019), 

especially with regards to environmental signal shredding and detectability (Jerolmack & 

Paola, 2010). Although these models capture the nature of stochastic dynamics well, one 

drawback is that they rely on user-defined thresholds to control the propagation of individual 

particles through the model domain rather than natural physical thresholds (Bak et al., 1987). 

Additionally, numerical rice pile models do not allow for transport of grains out of the model 

domain without experiencing storage on the surface and contributing to the construction of 

topography until a critical angle is exceeded whereby an avalanche occurs. In natural systems, 

sediment has the capacity to propagate through a system with minimal storage or deposition 

which could enhance propagation and detection (Benda & Dunne, 1997; Ganti et al., 2014). A 

key example of this is suspended sediment flux in rivers, which experiences significantly less 

storage than its bedload counterpart.  Physical 1D rice piles do not suffer from these limitations 

and offer a richer suite of autogenic statistics that arises from sediment storage and release 

along a 1D transport path, analogous to sediment transport in a 2D path in field scale systems 

(Frette et al., 1996; Jerolmack & Paola, 2010).  

Jerolmack & Paola (2010) determined the structure and timescales of autogenic noise using a 

time series of efflux generated from a numerical avalanching rice pile model, and proposed a 

framework for the propagation and storage of environmental signals. In their study, the 

structure of autogenic noise was found to exhibit two regimes. The first regime comprises 

temporal correlation (red noise) over short timescales, where spectral power increases as a 

function of period. The second regime comprises zero correlation (white noise) over all 

succeeding timescales, where the spectral power plateaus. The transition between the red noise 

and white noise regimes denotes a characteristic timescale Tx, which was hypothesised to scale 

as ~L2/q0, where L is system length and q0 is input rate. Tx represents the upper temporal limit 

on the ability of autogenic processes to “shred” environmental signals (Jerolmack & Paola, 
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2010). Environmental signals with periods greater than Tx are recorded in the discrete time 

power spectral density of the efflux (hereafter, called power spectra), whereas those with 

periods less than Tx are shredded as the periodicity of the input signal is within the scale of 

individual sediment transport events in the system, obliterating evidence of the signal 

(Jerolmack & Paola, 2010). 

Whilst the presence of white noise in STS  is expected to persist over all timescales greater 

than Tx (Jerolmack & Paola, 2010), the results of other numerical sandpile models find the 

presence of blue noise (anticorrelation) over the longest timescales (Hwa & Kardar, 1992; 

Kutnjak-Urbanc et al., 1996), where spectral power decreases as a function of period. The 

presence of anticorrelation within STS is due to the size constraints of a system which places 

an upper limit on the size of the largest sediment transport event (finite size effects). This finite 

size effect is reflected by a gradient break in the resulting power spectra at the transition from 

white noise to blue noise  (Hwa & Kardar, 1992; Korup et al., 2010; Ganti et al., 2011; Straub 

& Esposito, 2013; Bracken et al., 2015). Within the correlated regime (red noise), the system 

continues to operate in the same way as the previous time step (e.g. stabilization of channel 

networks on a delta which allow the system to generate consistently high sediment fluxes). 

However anticorrelation relates to a behaviour where the largest events are always followed by 

small events as the system regenerates or regrades over these longer timescales (Hajek & 

Straub, 2017). Anti-correlation or blue noise is common in power spectra from numerical sand 

and rice piles (Hwa & Kardar, 1992; Kutnjak-Urbanc et al., 1996), ecological models (Petchey, 

2000), ice-core analysis (Fisher et al., 1985) and population dynamics (Scheuring & Zeöld, 

2001), hinting at a universal structure due to the finite-size behavior of stochastic systems over 

their longest timescales. 

In the same manner as Tx was defined by spectral gradient breaks (Jerolmack & Paola, 2010), 

the spectral gradient break from white noise to blue noise denotes the presence of another 

autogenic timescale, which was suggested to scale with a system-wide discharge event (~L2) 

(Tc of Hwa & Kardar, 1992). The numerical rice pile investigations of both Hwa & Kardar 

(1992) and Jerolmack & Paola (2010) report a short autogenic timescale (i.e. transition from 

red noise to white noise) but a discrepancy exists in the definition and scaling of this 

fundamental timescale. Hwa & Kardar (1992) suggest that the transition from red noise to white 

noise scales as the maximum duration of avalanches (Hwa & Kardar, 1992), whilst Jerolmack 

& Paola (2010) suggest that this timescale represents a wedge-filling timescale on the order of 
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L2 (Tx , Jerolmack & Paola, 2010). The latter definition overlaps somewhat with the definition 

of the longer autogenic timescale by Hwa & Kardar (1992)  

The structure of autogenic processes (Hwa & Kardar, 1992) and the original framework for 

signal shredding (Jerolmack & Paola, 2010) is yet to be duplicated within a physical rice pile 

that evolves under gravity and hence is more comparable to natural STS. The physical rice pile 

is analogous to a single sediment routing system (Allen, 2017), and the associated temporal 

structure and timescales of autogenic processes incorporates all of the autogenic variability this 

single sediment routing system can offer. The analogy of a rice pile as a single sediment routing 

system is therefore a simple one, but still offers a crucial insight into the autogenic dynamics 

of natural systems and their ability to shred or transmit environmental signals. Here we set out 

to clarify the origin and scaling of these autogenic timescales by resolving the temporal 

structure of autogenic processes using, for the first time, a 1D physical rice pile. To do this, a 

time series of efflux from the rice pile at discrete time intervals is utilised (Figure 3.1). This 

efflux time series is generated from stochastic avalanche dynamics within the rice pile and is a 

proxy for the autogenic dynamics operating within the Earth’s surface. The characterizing the 

structure and timescales of autogenic dynamics within a system run under constant input rate, 

and this is used to understand the controls on signal shredding, by imposing signals with 

periodicity over the full range of autogenic timescales.  



 

60 
 

 

3.3. Results 

3.3.1. The temporal structure of autogenic processes 

To understand how autogenic processes control signal propagation, we must first understand 

the inherent structure of autogenic processes and quantify the key autogenic timescales intrinsic 

to the physical rice pile. To do this, a time series of efflux measured at discrete time intervals 

is utilised, generated from multiple realizations of the control experiment (run under a constant 

feed rate of 0.37 g s-1; ~18.5 grains s-1). Constant influx to the physical rice pile generates a 

range of avalanche event sizes, from continuous small efflux events (e.g. 0.1 g s-1; ~5 grains s-

1) to avalanches that span the entire length of the system (33-43 g s-1; ~1650 – 2150 grains s-1). 

The wide range of avalanche sizes that occur within the pile are generated from the pile 

fluctuating around a stationary critical state where localized, individual granular interactions 

can induce events of system scale. The probability distribution of these avalanches throughout 

the time series is heavy-tailed (Figure 3.2A), meaning that although the time series is 

dominated by small events (e.g. Figure 3.11, B1), an avalanche on the order of system size (e.g. 

a wedge failure event that returns the system to dynamic equilibrium; Figure 3.1, B2), has a 

small chance of occurring (Ganti et al., 2011). The rich stochastic dynamics evident in the 

Figure 3.1: The geometry and nature of rice pile experiments.  

(a) Schematic diagram of the experimental rice pile set-up. (b) Spatiotemporal scales of avalanches 

within the rice pile; over short timescales (b1), individual grains and small avalanches dominate the 

time series whereas over long timescales (b2), avalanches on the order of system size occur. (c) Time 

series of efflux from the physical rice pile run under constant influx rate (d) Power spectra generated 

from the efflux time series. Autogenic timescales are defined according to spectral gradient breaks.  
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output from the physical system agree with the structure of the internal dynamics observed in 

numerical models (Bak et al., 1987; Frette et al., 1996; Malthe-Sørenssen et al., 1999; 

Jerolmack & Paola, 2010). 

 

The power spectra generated from the efflux time series from the constant influx experiment 

exhibit three noise regimes defined by two distinct changes in the gradient of the power spectra 

(Figure 3.2B). The first regime comprises red noise (temporal correlation), whereby spectral 

power increases as a function of period (with a spectral gradient, α, of 2.2), The upper temporal 

limit of red noise denotes a characteristic autogenic timescale, Trw, which is approximately 30 

seconds for this experiment. The second regime comprises white noise, which occurs over 30 

to 650 seconds, where spectral power plateaus, indicating events over this timescale are 

temporally uncorrelated. The upper temporal limit of white noise denotes a characteristic 

autogenic timescale, Twb, which occurs at approximately 650 seconds for this experiment. The 

third regime comprises blue noise over timescales greater than 650 seconds, whereby spectral 

power decreases as a function of period (with a spectral gradient, α, of -2), exhibiting anti-

correlation in efflux.  

 
Figure 3.2: Time series analysis of mass efflux from the control experiment, where influx rate is 0.37 

g s-1.  

(a) Distribution of avalanche sizes throughout the time series, where the probability shows a heavy-

tailed distribution. (b) Power spectra of the time series for one realization of the control experiment, 

generated by the multi-taper method, showing tripartite geometry composed of red, white and blue 

noise. Spectral gradient breaks between the regimes mark two timescales: Trw and Twb. This spectrum 

is compared to the mean spectra from all 25 realizations of the control experiment, with the 95% 

confidence band generated from the realizations displayed. 
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These three noise regimes exist within the power spectra regardless of the absolute influx rate, 

Qin (Figure 3.3A). However, we explore the controls on the absolute spectral duration of each 

regime and both autogenic timescales, Trw and Twb, using a suite of experiments run under a 

range of constant influx rates (Table S3.1). Firstly, we find that the red noise regime and the 

value of Trw is insensitive to the influx rate and remain at a constant value of 30 seconds. In 

numerical sandpiles, this spectral regime was found to record the duration of individual 

avalanche events, where the duration of individual avalanches is directly proportional to 

avalanche size (e.g. mass effluxed). These individual events increase in duration until an upper 

cut off time is reached (Hwa & Kardar, 1992) which defines the maximum duration of an 

avalanche within the system and corresponds to the largest avalanche in terms of total mass 

liberated. Through examination of the efflux time series (Figure S3.1), this is also the case for 

the physical rice pile. The constancy of the value of Trw reflects the fixed dimensions of the 

system and material properties of the rice material, which fixes the critical angle of repose and 

therefore sets the duration of the longest avalanche regardless of the influx rate. Trw will vary 

between systems of different lengths (Hwa & Kardar, 1992). Over timescales greater than that 

of individual avalanche events (e.g. the white noise regime), avalanche of all sizes and duration 

coalesce, increasing the duration over which efflux occurs (Hwa & Kardar, 1992; Kutnjak-

Urbanc et al., 1996). In other words, the onset of one avalanche can instigate another avalanche, 

and so the efflux measured is the result of merged events. Twb on the other hand, which sets the 

upper limit to the white noise regime, is influx rate dependent (Figure 3.3B). In numerical 

sandpiles, this longer timescale was suggested to scale with L2 and influx rate, however the 

precise dependence was not determined (Hwa & Kardar, 1992; Kutnjak-Urbanc et al., 1996). 

Twb represents the time required for the influx to regrade the mass lost in the largest avalanche 

event (a regeneration timescale). The value of Twb can be predicted by Twb = a.(Mmax/Qin), where 

Mmax is the maximum mass efflux over the longest avalanche event (defined by Trw) and a is a 

parameter value that accounts for a bypass fraction of the efflux as the pile regrades; this is 

required as the rice pile is an open system and hence efflux still occurs whilst the mass regrades. 

Here, a has a value of 1.38±0.13 (n = 8). For this experiment, Mmax is approximately 142 grams 

(Figure S3.1); this will be discussed later. Over timescales greater than Twb, the rice pile 
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experiences avalanches that are of the order of system size, which return the pile from the 

maximum to the minimum slope. 

Figure 3.3: Time series analysis of efflux from four experiments compared to the control experiment.  

(a) Power spectra of the time series, normalized by the mean spectral power from each experiment. 

Period is normalized by Trw (~30 seconds). (b) Comparison of timescales Trw and Twb with changing 

input rate, where Trw remains constant and Twb decreases as a function of input rate. The dashed line 

shows the line of best fit for the variation in Trw. The solid red line shows the fit of the equation Twb = 

a*(Mmax/Qin). 

 

3.3.2. Shredding and detection of environmental signals 

Given that autogenic processes can alter environmental signals, we explore how the sediment 

transport mechanics associated with each spectral noise regime control signal propagation and 

hence how both autogenic timescales, Trw and Twb set thresholds for signal shredding and signal 

detection. We define shredded environmental signals as those signals that have undergone a 

severe reduction in amplitude during propagation through the rice pile. From now on these will 

be referred to as degraded signals. We define detectable environmental signals as those signals 

that produce a spectral peak within a power spectrum that exceeds the range of autogenic noise; 

this is defined statistically by the 95% confidence band. These concepts are defined separately 

as they describe different properties of environmental signals, but we emphasize that they do 

not always coincide; e.g. degradation does not define detectability. To understand thresholds 

for signal degradation and detection, we ran a suite of physical rice pile experiments with 

imposed sediment influx signals. The periodicities of the signals spanned the full temporal 

range of autogenic timescales, from below Trw to above Twb (Figure 3.4), to delimit the 

influence of both autogenic timescales. Furthermore, to understand the effect of signal 
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amplitude on signal degradation and detectability, we systematically varied the signal 

amplitude for each periodicity. For parity with the control experiment, all the imposed signals 

share the same mean feed rate (0.37 g s-1), but decrease in amplitude from 100% to 25% of the 

mean feed rate.  

To quantify degradation, we require knowledge of the amplitude of the output signal relative 

to the known input signal. Here, degradation is comparable to the concept of “gain” used to 

analyse the propagation and preservation of environmental signals within diffusive systems 

(e.g. Braun et al., 2015).  

To quantify the output signal amplitude, the efflux time series from an experiment with 

imposed periodicity is first divided into lengths equal to the input period. Then, the mean efflux 

is taken every second over the input signal period; this mean efflux time series should 

approximately resemble the input signal. To this mean efflux, we then fit a sine wave where 

the period is pre-defined (the known input periodicity), but the amplitude and phase shift are 

returned depending on the output signal identified. We compare the amplitude of the signal 

evident in the output flux, to that of the known input signal and quantify a percentage similarity 

(Figure S3.2). 
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Figure 3.4: Power spectra generated from a suite of rice pile experiments with imposed signals in the 

form of cyclic rice influx. Spikes in power at the imposed periodicity highlight the presence of imposed 

signals. The power of the signal spike decreases as signal amplitude decreases. 

Each panel contains 5 power spectra; 4 from rice pile experiments with imposed periodicity where the 

imposed periodicity is constant but signal amplitude decreases in reference to the mean feed rate, and 

also the spectra from the control experiment. (A) Imposed periodicity of 12s. (B) Imposed periodicity of 

100s. (C) Imposed periodicity of 1000s. We highlight that spectral structure is not influenced by the 

addition of external forcing. The imposed influx signals are shown in relation to both autogenic 

timescales (Trw and Twb) by the dashed red line. 
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We find that input signal periodicity is the primary control on signal degradation and that the 

short autogenic timescale, Trw, sets an upper-limit to the timescales over which signals 

experience degradation (Figure 3.5A). Over all periodicities, signal amplitude does not 

influence the amount of signal degradation. Signals with periodicity less than Trw experience 

severe degradation, where the smaller the periodicity of the signal, the greater the amount of 

degradation experienced. We highlight these signals are not completely destroyed (i.e. 

shredded (Jerolmack & Paola, 2010) but are reduced in amplitude. In comparison, signals with 

periodicities greater than both Trw and Twb experience minimal degradation, where the output 

signal exhibits on average 90% similarity to the known input signal over all periodicities 

greater than Trw (Figure 3.5A). We note that signal amplitude does not influence the amount of 

degradation a signal experiences; signals of the same periodicity are degraded by equal 

amounts regardless of their input amplitude (Figure S3.3). However, we acknowledge this may 

not be the case for signals with larger amplitudes (e.g., those on the order of Mmax). 

We also explore the relationship between the degradation of input signals and their 

detectability. To make a statistical statement about the presence of an influx signal within the 

power spectra, a confidence band was generated from the background structure of autogenic 

processes, which allows autogenic noise to be differentiated from imposed periodicity. We 

generate a 95th percentile confidence band from a suite of control experiments (Figure 3.2B), 

all sharing the same forcing conditions, by calculating the percentage of the power spectra that 

falls above a given power for each period. To quantify detectability, we compare the spectral 

power of the signal spike to the spectral power of the 95% confidence band at the imposed 

periodicity; detectable signals are those which breach the confidence band. We find that signals 

with periodicity less than Trw do not generate a spectral response that exceeds the 95% 

confidence band and so are statistically undetectable in the output flux, regardless of amplitude 

(Figure 3.5B). We acknowledge this may not be the case for signals with larger amplitudes 

(e.g. those on the order of Mmax). Above Trw, signal amplitude influences the detectability of 

signals; the greater the amplitude of the signal, the greater the ratio of the spectral peak to the 

confidence band. Large amplitude signals with periodicity between Trw and Twb are easily 

detectable in the output flux, but small amplitude input signals can be rendered undetectable in 

the output flux. This is because the amplitude of the signal is of the same magnitude as 

autogenic fluctuations, i.e. the signals are obscured by autogenic noise. However, above Twb, 

the amplitude of the resultant signal spike is much greater than that of the confidence showing 

enhanced detectability. Signals with periodicity over these long timescales are greater than the 
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largest autogenic fluctuations and therefore overwhelm the noise produced by autogenic 

processes. Therefore, Twb sets a temporal threshold beyond which the detectability of 

environmental signals is enhanced.  

 

Figure 3.5: Degradation and detectability of environmental signals 

(A)  Signal degradation as a function of input period, measured by comparing the known input signal, 

to the signal evident in the efflux from stacking multiple realizations (see Methods). (B) Signal 

detectability as a function of both input period and amplitude. Power of the signal spike at the imposed 

periodicity compared to the power of the 95% confidence band at the imposed periodicity. The data at 

0 amplitude represents an experimental run with no imposed periodicity. Y-axis data points are 

calculated as power at imposed period/power of confidence band at imposed period, hence values 

greater than 1 breech the confidence band. 

3.4. Discussion 

3.4.1. Separating thresholds for the shredding and detection of environmental 

signals 

Our physical experiments show the presence of a short autogenic timescale, Trw, denoting the 

red noise to white noise transition in the power spectra. Trw in the physical rice pile is analogous 

to Tx found in numerical rice pile systems (Jerolmack & Paola, 2010), and our experiments 

confirm that Trw provides an upper limit to the timescales over which signals experience 

shredding. Jerolmack & Paola (2010) found that short period input signals (T<Tx), with 

amplitudes below an exceedance that would otherwise induce system clearing events, were not 

detectable in the power spectra and were described as completely obliterated (i.e. shredded). 

However, we show that small amplitude influx signals can be reconstructed by stacking the 

output flux if the periodicity is known, suggesting that input signals are not obliterated but 
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rather severely degraded in amplitude.  Small amplitude influx signals are of similar magnitude 

to autogenic fluctuations within STS, so storage and release processes can physically smear 

short period input signals out over a band of time (i.e. signal shredding (Jerolmack & Paola, 

2010), which consequently reduces the amplitude of an input signal (degradation) and hence 

the power of the input periodicity. We modify the original definition of signal shredding to: the 

smearing of externally-driven signals by sediment transport processes across a range of 

spatiotemporal scales, resulting in the amplitude of the environmental signal at the system 

output being severely degraded when compared to the amplitude of the original signal. 

Although Tx provides a threshold for shredding in the numerical rice pile, Jerolmack & Paola 

(2010) did find that a separate threshold existed for the detectability of shredded signals, where 

the signal produced a measurable response in the power spectra. They found that only signals 

with periodicity T/Tx <0.6 are rendered undetectable in the output flux, whereas the output flux 

showed evidence of periodicity when the signal periodicity was T/Tx = 0.6-1. Our physical 

experiments show this is not the case. We find that all signals with periodicity less than Trw are 

rendered undetectable in the output flux, and hence Trw provides an upper limit for signal 

degradation, and a lower limit for signal detectability.  

We also find that signals with periodicity greater than Trw can be rendered undetectable if 

obscured by autogenic noise (Morris et al., 2015). This finding augments earlier work that 

hypothesised that the red noise to white noise transition acts as ‘a lower-limit on the ability to 

pass and record environmental signals’ (Jerolmack & Paola, 2010). Instead, we find that signal 

detectability is amplitude dependent at timescales between Trw and Twb. We show that only at 

timescales greater than Twb, is faithful signal transfer expected over all amplitudes, as the signal 

period is greater than the longest timescale autogenic process. Therefore, we find that it is the 

truncation timescale Twb, not Trw (Tx) that is ‘the lower-limit for the faithful propagation and 

recording of environmental signals within landscapes’; a definition originally given to Tx. This 

is also found to be the case for theoretical frameworks defining signal detectability for longer 

timescale stratigraphic analysis (Foreman & Straub, 2017; Toby et al., 2019). 

Jerolmack & Paola (2010) considered Tx (here Trw) to be comparable to the ‘basin filling 

timescale’ or the ‘equilibrium timescale’ (Teq) in a deterministic diffusional framework of 

landscapes, representing the time required to completely regrade surface topography to a steady 

state following a perturbation (Paola et al., 1992). However, we suggest that Teq is more 

appropriately approximated by the longer autogenic timescale Twb, which comes about through 

the shared property of complete surface regrading or topographic filling, that takes place over 



 

69 
 

these timescales. Whilst Twb and Teq are comparable regeneration timescales, Trw and Teq both 

denote upper limits to the timescales over which environmental signals experience degradation; 

signals propagating through a diffusional system do not experience a reduction in amplitude 

(“gain”) when the signal period considerably exceeds Teq (McNab et al., 2023). However, the 

timescales over which signal degradation occurs in stochastic systems (<Trw) could be up to an 

order of magnitude less than within diffusional systems (if Twb is approximately equal to Teq), 

but this is dependent on the mechanics of sediment transport within the system and the influx 

rate to the system, which governs the separation of Trw and Twb. The reason for this difference 

in behaviour is that a periodic sediment supply signal will pass unimpeded through a diffusive 

system (i.e. no degradation) once a system-wide topographic steady state is achieved (Straub 

et al., 2020), whereas, in stochastic systems, the signal period must only exceed that of the 

largest autogenic event. As autogenic processes have no role within a diffusion framework due 

to the averaging of lateral stochastic system dynamics, Trw does not exist and signals can 

therefore only be related to Teq. This leads to a loss of predictive capability when evaluating 

the limits of environmental signal propagation across the Earth’s surface, as only long 

timescale signals can be assessed (Toby et al., 2022). As autogenic processes are inherent to 

3D STS and set a lower limit for signal propagation and preservation, any theoretical 

framework must incorporate stochastic dynamics. 

3.4.2. The detectability of shredded signals 

At timescales less than Trw we find signal amplitude to have no effect on the degree of signal 

degradation, but we acknowledge that a threshold must exist within the system beyond which 

high amplitude short-period input signals are detectable in the output flux. This amplitude or 

magnitude threshold (M) is expected to scale with the maximum size of autogenic events in the 

numerical rice pile , i.e. M ~ L2Sc, where Sc is the critical threshold slope (Jerolmack & Paola, 

2010). In the numerical rice pile, M represents the maximum volume of rice effluxed over the 

longest avalanche event (analogous to Mmax in this study). M was defined on the basis that the 

short autogenic timescale scaled with sediment flux (e.g. a volume filling timescale, equivalent 

to Teq; (Jerolmack & Paola, 2010), which we show not to be the case for Trw, but instead applies 

to the longer autogenic timescale, Twb. Therefore, we postulate that the amplitude required for 

a degraded influx signal to be detectable is much lower than M, as the signal amplitude is only 

required to exceed that of individual autogenic events, rather than the mass required to achieve 

a system-wide topographic steady state. Furthermore, in the numerical rice pile, the model does 

not allow for grains to propagate through the model without experiencing storage (analogous 
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to washload sediment in rivers). In this model, grains that enter the model at the top of the pile 

instantly ‘stick’ at the input location and remain in the model unless liberated by an avalanche. 

However, in the physical rice pile (and STS), grains have the ability to propagate through the 

system with minimal storage. Therefore, the inclusion of suspended and/or washload sediment 

increases the efficiency of signal propagation. These reasons allow us to anticipate that 

amplitude required for the detectability of degraded signals is much lower than M.  

The amplitude of the largest signals T<Trw imposed onto the physical rice pile is equal to the 

mean feed rate, with a total influx much lower than Mmax, and hence are severely degraded and 

undetectable in the output flux. However, we suggest that if the signal amplitude exceeded the 

mean feed rate, or the rate at which the influx rate varied was increased, the signal would be 

degraded by the same amount but would be detectable in the output flux. A square wave input 

signal with periodicity less than Trw and an amplitude equal to the mean feed rate was imposed 

onto the physical rice pile and produced a detectable response in the output flux (Figure S3.4). 

We hypothesize this to be the case as the total mass influx of a square wave signal is greater 

than that of a sine wave signal over the same periodicity. This means that a signal can be both 

severely degraded in amplitude, but the spectral spike can exceed the 95% confidence band. 

Once the amplitude of the signal is equal to or greater than Mmax, these signals will overwhelm 

the magnitude of the autogenic processes, and hence we hypothesize that these signals will pass 

through the system without experiencing degradation. A pathway for future work will be to 

quantify the amplitude threshold over which short-period signals experience no degradation 

and explore the nature of this threshold as a function of input periodicity. 

While quantifying the effects of autogenic processes is important for understanding signal 

shredding, we note that quantifying the detectability of signals over all periodicities in 

landscapes and sedimentary layers takes precedence when reconstructing past environmental 

signals from landscapes and strata. Power spectra are the most common method used to search 

for evidence of environmental signals from a time series of stratigraphic measurables. 

However, the use of power spectra alone is insufficient if signals have been rendered 

undetectable due to degradation/obscuring by autogenic noise. In this case, the only way to 

truly show the presence of external signals is if one knows for certain the periodicity and can 

stack multiple realizations of the signal to reconstruct it. However, when working with time 

series generated from stratigraphic measurables, the messy conversion of space to time (e.g. 

the assumption of linear sedimentation rate) brings substantial error into a reconstructed time 

series over meso-timescales (~101 – 105 years) (Sheets et al. 2002; Straub & Wang, 2013; 
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Foreman & Straub, 2017; Straub et al., 2020). This, alongside the lack of knowledge of the 

imposed periodicity to search for, makes this methodology generally unfeasible and hence we 

have to rely on power spectra. If environmental signals could be identified in a time series 

without the use of power spectra (e.g. the time series has excellent age control so the signal 

could be reconstructed by stacking the time series), this would remove the requirement to 

define appropriate statistical thresholds (i.e. confidence levels) to differentiate signal from 

noise in power spectra. This is beneficial, as the application of ill-fitting thresholds can generate 

false positives and promote misinterpretations regarding the presence of periodicity (Vaughan 

et al., 2011). The identification of environmental signals from power spectra is aided by 

knowledge of key autogenic timescales, such as those presented here. For example, the 

interaction between an environmental signal of known periodicity and autogenic processes can 

guide scientific practitioners as to whether a signal is not detectable due to shredding (T< Trw) 

or whether the signal has been obscured by autogenic noise (T>Trw).  

3.4.3. Rice piles to landscapes to strata 

The specific sediment transport and storage mechanisms within an STS will determine the 

nature and timescales of autogenic processes, which mediates how STSs might transmit 

environmental signals (Hajek & Straub, 2017; Scheingross et al., 2020; Toby et al., 2022). In 

the physical rice pile, the temporal extent of correlation (i.e. red noise up to Trw) is defined by 

the duration of individual avalanche events. The rice pile is analogous to an individual 

component or segment of a STS, such as a hillslope experiencing sediment transport events of 

all sizes, with the largest event being a landslide. In this example, it is the duration of individual 

sediment transport events (or autogenic processes) within a single segment that defines the 

temporal extent of correlation. However, when considering a STS with multiple, linked 

segments, the sediment efflux out of one segment becomes the sediment influx to the next (e.g. 

sediment transport from a hillslope segment to a fluvial segment in a catchment). Therefore, in 

order for the sediment flux from a hillslope to be measured at the catchment outlet, it must 

propagate from the hillslope into the fluvial network. This means that rather than the absolute 

duration of individual sediment transport events defining the extent of correlation, we 

hypothesize that it is instead the time required to evacuate the sediment from the hillslope to a 

valley and ultimately into the fluvial system and hence be measured at the catchment outlet. 

This means that the (dis)connectivity of STS segments could influence the extent of correlation 

and the timescales of autogenic processes evident from a time series of sediment flux at the 

catchment outlet (Wohl et al., 2019). For linked segments of a hillslope-fluvial system, the 
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timescales of correlation would relate to the time required to remove and redistribute sediment 

from the hillslope to the fluvial network. If the hillslope-fluvial system is well connected, 

sediment delivered from the hillslope segment is fed directly into the fluvial segment, hence 

we hypothesize that time required to evacuate sediment from the catchment is short, and hence 

Trw is short. This also means that the STS could convey sediment flux signals effectively 

through consecutive STS segments (Tofelde et al., 2021), depending on the autogenic 

processes and storage capacity of the STS segment in question (Toby et al., 2022). On the other 

hand, if a hillslope-fluvial system is disconnected, sediment is stored on the hillslope where it 

is gradually removed and transported to the river network. This gradual liberation of sediment 

enhances the sediment flux exiting the catchment over long timescales (Clapuyt et al., 2019). 

Many extremely large landslide deposits can remain in mountain landscapes for up to 104 years 

(Korup et al., 2010), which contributes to sediment flux exiting the catchments over these 

timescales. This means that although the absolute landslide duration on the hillslope is short-

lived, the time to evacuate the associated sediment from the catchment by fluvial processes is 

much longer, which we hypothesize will extend the timescales of temporal correlation (e.g. red 

noise) (Korup et al., 2010) and hence the timescales over which signals will experience 

shredding. From the above it is evident that the interconnection of STS segments strongly 

influences the spectral geometry of influx at the outlet of the connected segments and controls 

how signals propagate between and through them (e.g. Toby et al., (2022)). 

We find that Trw in the physical rice pile is independent of the rate of sediment supply, however 

the behavior of smaller avalanche dynamics is not. The greater the sediment supply rate, the 

more frequent the occurrence of smaller avalanches in the rice pile (Figure S3.5), however, the 

frequency of the largest avalanches converges at the size of the largest system-scale event. 

Conversely, for natural and experimental STSs this timescale is unlikely to be independent of 

the rate of sediment supply because topography can be built and filled faster with an increased 

sediment supply rate. For example, temporal correlation (red noise) in a cellular automata 

model of alluvial transport (Jerolmack & Paola, 2007) extends up to a maximum timescale of 

river avulsion, and within a single deltaic system, the maximum autogenic timescale is denoted 

by a system-wide, lobe movement event and associated compensational filling of topography 

(Straub, 2019). In each case, the maximum autogenic timescale is akin to Trw in the physical 

rice pile, but unlike Trw they are dependent on the rate of sediment supply (Bryant et al., 1995). 

Further work is needed to investigate the mechanisms that contribute to the longest duration 
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autogenic events, which will define the autogenic timescales in both experimental and field 

scale systems.  

Limitations of stratigraphic datasets (e.g. limited outcrop exposure, incompleteness and the 

assumption of linear sedimentation rate) make it difficult for field practitioners to explore 

details of autogenic processes over geological timescales. High resolution time series of surface 

sediment fluxes and preserved deposition rates of an experimental delta run under constant 

boundary conditions (Straub et al., 2015) allow us to study the structure and timescales of 

autogenic processes in a system more analogous to that of field scale systems, and one that 

contains morphodynamic behaviour. We create power spectra of surface sediment flux from 

the terrestrial delta top to the marine, analogous to the efflux of rice from the rice pile (Figure 

3.6), which reveals temporal correlation (red noise) over all timescales up to the compensation 

timescale, Tc (Wang et al., 2011). Tc represents the truncation timescale of depositional 

processes in natural systems (Ganti et al., 2011), analogous to Twb that represents the largest 

autogenic event in the rice pile, and defines the maximum timescale of autogenic organization 

in stratigraphy (Sheets et al., 2002; Wang et al., 2011). As with Twb in the rice pile, the 

compensation timescale denotes a detectability timescale for signals within channelized 

systems, whereby input signal periodicity greater than Tc are more likely to be recorded in both 

landscapes and strata (Li et al., 2016; Foreman & Straub, 2017; Toby et al., 2019). At 

timescales greater than Tc, anti-correlation (blue noise) persists over all subsequent timescales. 

This spectral geometry is maintained within spectra generated from a time series of preserved 

deposition rates generated from the same experiment (Figure 3.6).  
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Unlike the rice pile, power spectra generated from the experimental delta do not exhibit a white 

noise regime. Building on our understanding of physical rice pile processes and their 

contribution to autogenic spectral structure, we note that a white noise regime will not be 

present when the timescale of the longest correlated event (i.e. Trw) is equal to or exceeds the 

regeneration timescale (Twb). The convergence of these timescales in the power spectra of the 

Figure 3.6: Surface morphology and power spectral analysis from delta basin experiment TDB-12-1 (Straub 

et al., 2015). 

(A) Overhead photo from the delta basin experiment. Power spectra for preserved deposition rates were 

generated at every point (5mm spacing) from the centre  portion of the radial white line, from which an average 

spectrum was generated. (B) Power spectra generated from a time series of sediment flux to the marine using 

the multi-taper method. Time is normalized by the compensation timescale, Tc (~49 hours). (C) Power spectra 

generated from a time series of preserved deposition rates (Figure S6), using the multi-taper method. The black 

line defines the ensemble average power spectra. normalized by the long-term accommodation generation rate 

(0.25mm h-1). Time is normalized by the compensation timescale, Tc (~49 hours). 
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experimental delta defines only one spectral rollover from red to blue noise. We hypothesize 

this to be because the duration of the maximum autogenic timescales (i.e. a system-wide, lobe 

movement event) and the compensation timescale (Tc; approximately 49 hours for this 

experiment (Hajek & Straub, 2017)) are of the same order of magnitude. Therefore, we 

emphasize that the spectra produced from a time series of landscape or stratigraphic 

measurables may not necessarily exhibit tripartite geometry, as this is dependent on system 

size and sediment supply rate which controls the relationship between Trw and Twb and so 

therefore the presence and duration of white noise. However, a long time series generated from 

landscape or stratigraphic measurables that is of sufficient temporal resolution should reveal 

both red and blue noise. The convergence of timescales could also happen in other geomorphic 

systems, such as landsliding in mountain catchments, whereby a tripartite spectral geometry 

would be prevalent when the reoccurrence interval of landslides exceeds the time needed to 

evacuate the landslide sediment from the catchment by fluvial processes. However, if the time 

to evacuate landslide sediment exceeds the reoccurrence interval, we expect this would result 

in a condensed spectral geometry showing one spectral rollover between red and blue noise 

(i.e. no white noise). 

Within the rice pile Trw and Twb are linked by the maximum-size autogenic event, whereby Trw 

represents the longest avalanche duration to evacuate this rice mass and Twb represents the time 

required to regrade the rice-wedge with this same amount of mass. To investigate whether this 

parity of mass or volume might exist in close analogues of field scale systems, we use volume 

fluxes from the experimental delta. Specifically, we calculate the volume of sediment exported 

between large scale lobe movement events, representing the largest avalanche, to be 

approximately 0.030 m3; and the volume of sediment required to regrade delta topography by 

one channel depth, representing the regrading of the sediment wedge, to be approximately 

0.024 m3. The large-scale lobe movement events analysed on the delta were limited to 

timescales less than Tc, which is defined on the basis of the time taken to deposit one channel 

depth across the delta. We once again advocate that Tc is analogous to the wedge filling 

timescale Twb.  

3.4.4. The severity of the signal shredder 

Although autogenic processes within landscapes and strata show comparable temporal 

structure containing both red and blue noise, we have evidence that the shredding process may 

operate with differing severity. The spectral growth index (e.g. gradient of red noise) varies 
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between the spectra, with the deposition rate power spectra following a much lower index value 

than the surface delta fluxes or rice pile (α = 0.8 versus α = 1.3 and α = 2.2 respectively).   

Systems which evolve towards a critically self-organised state are defined as having spectral 

growth at 1/f (e.g. pink noise, α = 1) (Bak et al., 1987), where noise in the system is moderately 

correlated (Grumbacher et al., 1993). We find that over short timescales, the surface delta 

fluxes have moderate correlation, with spectral growth at approximately 1/f (α = 1.3), whereas 

the rice pile has strong correlation, with spectral growth is approximately 1/f2 (e.g. red noise, 

α = 2) (Grumbacher et al., 1993). Over these timescales, the strength in the correlation of the 

system indicates the frequency of erratic behaviour away from the mean state; the stronger the 

correlation, the less frequent the chance of erratic behaviour. To explain this, we refer to the 

dynamics present within a delta. When a channel network is stable on a delta top, the fluxes to 

the marine are consistent at high rates until the channel network collapses. The consistency of 

the channel network allows for the efficient propagation of sediment down system. However, 

during this period of stability, events such as infrequent breaches may occur that divert water 

and sediment to the delta-top for short time periods, but do not trigger an avulsion event. This 

is defined as erratic behaviour; e.g. a rapid, temporary change in the system. This long-term 

stability intermixed with short term temporary fluctuations manifests as approximately 1/f 

noise in surface delta fluxes. However, we find that depositional fluxes have weak correlation, 

with spectral growth less than α = 1, indicating that the system has a considerable chance of 

being driven in a different direction at any time. Within the delta system, we hypothesize that 

the correlation in the system is defined by periods of no-deposition, and hence during a period 

of stasis, the system will tend to remain in stasis up to a maximum timescale of Tc. However, 

periods of deposition and erosion (over a range of spatiotemporal scales) interrupt periods of 

no-deposition (e.g. long-term erratic behaviour) which weakens the temporal correlation. 

The differences in the strength of the correlation between surface and stratigraphic records 

could suggest variations in the intensity of the shredding process. Within pink noise (α ~1) and 

red noise (α ~ 2) systems, the stability of the STS could suggest short-period signals propagate 

more effectively. Whilst these signals would still experience some degradation, as they do not 

overwhelm autogenic fluctuations, their propagation is relatively uninterrupted. For example, 

when the channel is stabilized on a delta top, consistently high sediment flux rates allow for 

effective sediment transport down system. This would result in overall less degradation and 

possibly allow the imposed signal to be reconstructed by stacking records at the known 

periodicity. However, the erratic correlation present in systems where α <1 (e.g. interruptions 
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in sediment transport and deposition) suggests a stronger ability to smear signals through space 

and time. In these systems, the balance between deposition, erosion and stasis is highly 

variable. Hence, the greater the lateral mobility of the system, the greater the chance of hiatuses 

and/or reworking of previously deposited sediment by erosion (e.g. the occurrence of long-

term erratic behaviour) and hence the lower the rate of spectral growth. This may result in a 

signal being completely obliterated (i.e. no returnable amplitude in a time series of sediment 

flux). If the severity of the degradation process does inversely scale with alpha, our results 

suggest that the depositional filter could act as a “super shredder” of environmental signals.  

Signals with periodicity less than Trw can sometimes be reconstructed from stacking landscape 

records, but this requires the record to be many multiples of the imposed periodicity allowing 

the transport system noise to be averaged. Furthermore, signals with periodicity between Trw 

and Twb can be detected or obscured within a landscape depending on the amplitude of the 

signal. However, any signal detectable within landscape records may not be of sufficient 

periodicity or magnitude to overcome the longer, harsher stratigraphic shredding regime. 

Therefore any resemblance of a signal would be completely removed within a time-series of 

stratigraphic measurables (Toby et al., 2019; Straub et al., 2020).  

3.4.5. The nature of autogenic processes 

The longest autogenic timescales evident in landscapes and strata (Twb or Tc) define rollovers 

to a blue noise regime within power spectra. Although the presence of this spectral regime is 

intuitive, it is rarely acknowledged in spectra generated from stratigraphic measurables; 

instead, spectra are described to be dominated by the presence of commonly known red and 

white noise (Weedon, 2003; Vaughan et al., 2011). The lack of identification could be a result 

of how power spectra are commonly plotted; plotting power spectra as a function of frequency 

renders blue noise more difficult to identify than if plotted as a function of period. However if 

blue noise is simply not present, this could result from the lack of availability of long-time 

series datasets (either due to insufficient duration of the instrumental record or due to the 

availability of outcrop exposure), the incompleteness of the stratigraphic record favouring 

high-frequency fluctuations (Straub et al., 2020), the messy conversion of space to time from 

stratigraphic measurables (e.g. the assumption of linear sedimentation rates) (Barefoot et al., 

2023), or the lack of dynamic equilibrium in STSs, generating non-stationary statistics and 

therefore rendering blue noise unobservable (Muto et al., 2007). The unknown presence of blue 

noise within power spectra generated from stratigraphic measurables has implications for 



 

78 
 

generating statistical tests to detect the presence of environmental signals (Hajek & Straub, 

2017). The application of the autoregressive lag 1 (AR1) model (Pemberton & Priestley, 1990), 

typically for paleo-climatic studies, does not fully represent the spectral background structure 

generated by geomorphic variability (Foreman & Straub, 2017), which could produce false 

positives and spurious signals. To ensure accurate detection of environmental signals, spectral 

estimations must provide a strong fit to the background structure. The potential universality of 

the presence of blue noise within the temporal structure of autogenic processes highlights the 

requirement to generate a statistical model to fit power spectra of this structure, which will 

allow the accurate detection of environmental signals over all autogenic timescales. 

Overall, two key timescales emerge from the study of autogenic dynamics within a physical 

rice pile experiment which provide thresholds for both signal degradation (Trw: the event 

duration timescale) and enhanced signal detection (Twb: the system regrading timescale). The 

autogenic timescales presented provide a framework to predict the severity of signal shredding 

across the Earth’s surface and to strata, and establish robust confidence limits of signal 

detectability in landscapes and strata. We highlight the applicability of this framework to all 

segments of a sediment routing system (for example, erosive catchments experiencing land 

sliding or fluxes to the deep marine) alongside systems that experience environmental 

stochasticity (e.g. earthquakes, storms and floods; (Straub et al., 2020)).  

3.5. Materials and methods 

3.5.1. Experimental design 

A suite of rice pile experiments were conducted in the Sediment Dynamics Laboratory at 

Tulane University, to characterise the nature of the autogenic dynamics and assess the degree 

to which key autogenic timescales provide thresholds for signal shredding and detection.  

 

The experimental apparatus is constructed of two vertical, parallel glass sheets 37.5cm long, 

positioned 2.6cm apart. Rice was fed (influx) to the pile from a dry particle feeder (Schenk 

Accurate) positioned 8mm from the top surface, allowing a rice pile to form at a critical angle 

so that a dynamic topographic equilibrium was achieved. Over the suite of experiments, influx 

was defined between a minimum and maximum range (0 g s-1 and 0.78 g s-1), controlled at 1 

second intervals via a computer connected to the sediment feeder which directly feeds the pile. 

Efflux was measured at approximately 1 second intervals using an Ohaus EX12002 balance 

(accuracy and precision of 0.1 grams). The balance has a maximum mass of 12kg, and all 
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experiments were run until the balance was saturated. The dimensions of rice grains used in 

the experiments have a diameter of 2.5±0.5 mm, length of 8±0.5 mm and a mass of 0.02 grams 

(Table S2:). The experimental set-up used here is similar to that of the physical rice pile of 

Frette et al., (1996). 

 To ensure the efflux data are driven only by the internal autogenic dynamics of the rice pile 

and not triggered by external noise, we analysed accelerations within the room when the 

sediment feeder was on and off, when sediment feeder was on but with no rice delivery, and 

when rice was delivered (Figure 2.2). Accelerations were measured using the Phyphox 

application on an iPad, which records x, y and z accelerations at an increment of ~0.05 seconds 

to two significant digits of acceleration with SI units. The raw acceleration data, alongside 

power spectra of the time series, were analysed to confirm external vibrations were not 

triggering avalanches, or that external vibrations did not occur at repeating frequencies. 

A series of experiments were conducted where rice was fed directly from the sediment feeder 

to the scale, to confirm we had high temporal control over the influx rates and cycles imposed. 

We generated power spectra from the time series, which confirms white noise was present 

across all frequencies, except a spike in power if periodicity was imposed (Figure 2.3).  

Firstly, a control experiment was run for 9 hours with a constant influx rate of 0.37 g s-1. The 

influx rate denotes the mean rate of the sediment feeder, and experimental run time was defined 

by the time to saturate the balance at the defined influx rate. This experiment was used to define 

the full spectral structure generated by a physical rice pile and quantify autogenic timescales 

evident from rollovers between spectral regions. Using this baseline behaviour, a suite of 9 

experiments (Table S1). were used to explore the influence of influx rate on the autogenic 

dynamics and timescales found in the control experiment. These experiments varied 

systematically in intervals of approximately 0.1 g s-1 from the minimum to the maximum influx 

rates available on the sediment feeder. 

To explore limits of signal shredding and signal detection, a matrix of 36 experiments were run 

with cyclic influx of different periods and amplitudes. To achieve parity with the control 

experiment, a mean influx rate of 0.37 g s-1 was attained for all cyclic experiments. 9 

periodicities were chosen to cover the range of autogenic timescales evident in the control 

experiment: 6s, 12s, 24s, 48s, 100s, 250s, 500s, 1000s and 2000s. The amplitude of the cycles 

were chosen as percentages of the mean feed rate (0.37 g s-1), increasing in 25% intervals from 

25% (0.0925 g s-1) to 100% (0.37 g s-1). 
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3.5.2. Signal detection from power spectra 

Discrete time-power spectral densities of efflux time series (power spectra) were generated 

using the multi-taper method (MTM) with 2 tapers. Key autogenic timescales can be observed 

by eye on the power spectra as ‘roll-overs’ or ‘gradient-breaks’. To delimit these timescales 

accurately we use the ‘findchangepts’ function in MATLAB. This function is controlled by 

two key input parameters: the maximum number of changes and the type of change to detect 

(e.g. variations in mean, standard deviation, gradient). For our spectra, we specify 2 changes 

(to account for the presence of two rollovers in the spectra) and use linear as the type of change 

to detect, applied on log transformed spectral data. This method detects changes in the mean 

and slope of the input spectra, which can be inverse log transformed to solve for the power-law 

exponent of the fit. 

To make a statistical statement about the presence or not of an influx signal in the power 

spectra, a confidence band for the discrete time-power spectral densities is required. Using 25 

realizations of the control experiment, we generated power spectra for each realization. For 

each periodicity, we rank the associated power values from all 25 spectra into ascending order 

to calculate the percentage of the realizations that fall above a given power for each period. 

From this, we calculate an estimate of the 95th
 percentile confidence band. 

3.5.3. Signal degradation 

To quantify the amount of degradation a signal experiences during propagation, we stack the 

efflux time series into lengths equal to the input period, and take the mean of the efflux for 

each second over the imposed periodicity. From this, we gain a mean ensemble efflux to which 

we fit a sine wave with a period equal to the known input, and are returned an amplitude and 

phase based on the signal present in the mean ensemble efflux. We compare the amplitude of 

the signal evident in the ensemble efflux, to that of the known input signal and quantify a 

percentage similarity (Figure S3.2) 
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This chapter characterises the temporal spectral of autogenic processes within the physical rice 

pile (an idealised STS) and provides a theoretical framework for the degradation and detection 

of environmental signals based on the autogenic timescales present within a STS (Research 

Question 1). The temporal structure of autogenic noise within the physical rice pile is found to 

contain three regimes: red noise over short timescales, white noise over intermediate 

timescales, and blue noise over long timescales. The breaks in the noise regimes delimit two 

autogenic timescales: Trw and Twb (Objective 1.1). Trw is found to delimit the duration of the 

largest sediment flux event, whereas Twb is found to be a regrading timescale that scales with 

influx rate (Objective 1.2). These two timescales denote thresholds for the occurrence of signal 

degradation and detection. Trw provides an upper limit to signal degradation and a lower limit 

to signal detection, whereas Twb provides a lower limit to enhanced signal detection (Objective 

1.3). 

 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SO5XJP
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Supplementary information to chapter 3 

 

Figure S3.2: Methodology to determine the amount of degradation a signal has experienced during 

propagation.  

The raw efflux time series is generated for an experiment with imposed cyclicity (here, period 100s, 

amplitude 0.37 g s-1). Then, the efflux is divided into lengths equal to the period of the input signal and 

the mean efflux over each second of the imposed periodicity is calculated. After this, a sine wave is 

fitted to the stacked data, where the periodicity is defined and the amplitude and phase is calculated 

based on the individual dataset. The amplitude of the output signal is then compared to the amplitude 

of the known input signal to calculate percentage similarity. 

 

 

Figure S3.1: Calculation of Mmax.   

Left: Time series of efflux over the duration of the largest avalanche in the rice pile. Right: Maximum 

mass effluxed over increasing time windows of observation, where at timescales greater than Trw, 

maximum mass plateaus 
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Figure S3.3: Signal degradation as a function of both input period and amplitude. 

Signals with periodicity below Trw experience severe degradation, whereas signals with periodicity 

greater than Trw experience minimal degradation. 

Figure S3.4: Detectability of square wave input signals with periodicity less than Trw and with an 

amplitude equal to or below the mean feed rate.  

Power of the signal spike at the imposed periodicity compared to the power of the 95% confidence band 

at the imposed periodicity. The data at 0 amplitude represents an experimental run with no imposed 

periodicity. Y-axis data points are calculated as power at imposed period/power of confidence band at 

imposed period, hence values greater than 1 breech the confidence band. 
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Figure S3.5: Distribution of avalanche sizes within the efflux time series from nine experiments with 

increasing influx rate.  

All the time series show a heavy-tailed distribution, however as the influx rate increases, there is an 

increased probability of a certain sized event occurring, but the distributions converge at the largest 

event 
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Figure S3.6: Time series of surface and stratigraphic dynamics from the delta basin 

Left: Time series of sediment flux to the marine realm, versus sediment flux to the terrestrial deposit 

within the experimental delta basin. The time series is generated from experiment TDB-12-1 (Straub 

et al., 2015). The time series of sediment flux to the marine was generated as follows. Topographic 

maps were taken over the duration of the experiment. Successive topographic maps were differenced 

to generate an isopach map (map of sediment thickness). Using the measured and imposed sea level 

each hour, all pixels in the terrestrial realm on the isopach map were summed, and this was multiplied 

by the x and y node spacing on the map to get a bulk volume of sediment deposit in the terrestrial over 

this time period. Then, a bulk sediment flux to terrestrial deposition was calculated by dividing by the 

time between the maps, and then converted to a volumetric sediment flux to terrestrial deposition by 

multiplying the bulk sediment flux by the fraction of the deposit which is sediment (1-porosity). This 

has been previously measured as 0.5 with the same mixture of sediment. To get a mass flux to terrestrial 

deposition, the volumetric flux was multiplied by sediment density (2650 kg m-3). The mass flux to 

terrestrial deposition was then subtracted from the known mass input flux (1.41 kg hour-1) to get the 

flux to the marine. Right: Time series of preserved deposition rates measured from data points spaced 

5mm apart along a radial arc within the experimental delta basin. 
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Table S3.1: Supply characteristics for the individual rice pile experiments, both constant and cyclic 

feed rates 

 

Experiment Stage 

Desired mean 

feed rate (g s-

1) 

Actual mean 

feed rate (g 

s-1) 

Period of 

forcing (s) 

Amplitude of 

forcing (g s-1) 

1 Control 0.37 0.358 - - 

2.1 Steady 0.02 0.027 - - 

2.2 Steady 0.041 0.052 - - 

2.3 Steady 0.196 0.22 - - 

2.4 Steady 0.25 0.28 - - 

2.5 Steady 0.3 0.29 - - 

2.6 Steady 0.6 0.73 - - 

2.7 Steady 0.78 0.99 - - 

2.8 Steady 1.76 2.1 - - 

3.1 Cyclic 0.37 0.358 6 0.37 

3.2 Cyclic 0.37 0.358 6 0.2826 

3.3 Cyclic 0.37 0.358 6 0.185 

3.4 Cyclic 0.37 0.358 6 0.0925 

3.5 Cyclic 0.37 0.358 12 0.37 

3.6 Cyclic 0.37 0.358 12 0.2826 

3.7 Cyclic 0.37 0.358 12 0.185 

3.8 Cyclic 0.37 0.358 12 0.0925 

3.9 Cyclic 0.37 0.358 24 0.37 

3.10 Cyclic 0.37 0.358 24 0.2826 

3.11 Cyclic 0.37 0.358 24 0.185 

3.12 Cyclic 0.37 0.358 24 0.0925 

3.13 Cyclic 0.37 0.358 48 0.37 

3.14 Cyclic 0.37 0.358 48 0.2826 

3.15 Cyclic 0.37 0.358 48 0.185 

3.16 Cyclic 0.37 0.358 48 0.0925 

3.17 Cyclic 0.37 0.358 250 0.37 

3.18 Cyclic 0.37 0.358 250 0.2826 

3.19 Cyclic 0.37 0.358 250 0.185 

3.2 Cyclic 0.37 0.358 250 0.0925 

3.21 Cyclic 0.37 0.358 500 0.37 

3.22 Cyclic 0.37 0.358 500 0.2826 

3.23 Cyclic 0.37 0.358 500 0.185 

3.24 Cyclic 0.37 0.358 500 0.0925 

3.25 Cyclic 0.37 0.358 1000 0.37 

3.26 Cyclic 0.37 0.358 1000 0.2826 

3.27 Cyclic 0.37 0.358 1000 0.185 

3.28 Cyclic 0.37 0.358 1000 0.0925 

3.29 Cyclic 0.37 0.358 2000 0.37 

3.3 Cyclic 0.37 0.358 2000 0.2826 

3.1 Cyclic 0.37 0.358 2000 0.185 

3.2 Cyclic 0.37 0.358 2000 0.0925 
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4. The incomplete record of autogenic processes sets limits on signal detectability. 

This chapter has been published as: Griffin., C., Duller, R.A., & Straub, K.M (2024). The 

incomplete record of autogenic processes sets limits on signal detectability. Journal of 

Geophysical Research: Earth Surface, v 129 (4), e2023JF007538 

When this thesis was initially submitted, Chapter 4 was in review at JGR: Earth Surface. This 

has now been published in JGR: Earth Surface as of 01/04/2024. Since review, the only 

significant changes have been clarifying section 4.4.2 and rewriting section 4.4.3 to add clarity 

to the workflow. 

Abstract 

Spectral analysis is a central tool regularly used by the scientific community to identify the 

presence of periodic processes within a time series of information, as spectral peaks at an 

imposed periodicity can be differentiated from internal (autogenic) variance. In scientific 

disciplines, such as seismology, the time series of information is of high temporal resolution. 

Hence, although temporal gaps are present, they do not impact the overall noise structure, 

meaning the full spectrum of autogenic variance can be reconstructed. However, power spectra 

generated from stratigraphic information are affected by temporal incompleteness due to 

varying episodes of erosion and geomorphic stasis which generate gaps over a range of scales. 

This removes information related to the natural, autogenic, variability present within sediment-

transport systems which makes it challenging to accurately reconstruct the structure and 

strength of paleo-surface processes, which defines the detectability of past environmental 

signals. We explore how incompleteness impacts the temporal structure of autogenic noise 

within power spectra, and how this influences the detectability of spectral spikes related to 

environmental signals. We utilise a sediment flux time series from a physical rice pile and 

progressively degrade this data to mimic varying degrees of stratigraphic incompleteness. We 

find that incompleteness strongly influences the timescales and spectral structure of autogenic 

noise evident, and can render signals over all periodicities undetectable within a highly 

incomplete time series. This offers the ability to confidently justify the interpretation of subtle 

environmental signals from field measurements and understand the records that may best 

preserve paleoenvironmental variability. 
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4.1. Introduction 

The internal dynamics within sediment-transport systems (STSs) are characterised by local 

episodes of sediment storage and release that occur naturally, known as autogenic processes, 

which are ubiquitous across all landscapes and generate stochastic fluctuations in sediment 

transport in the absence of external (allogenic) forcing (Hajek & Straub, 2017; Jerolmack, 

2011; Jerolmack & Paola, 2010; Kim & Jerolmack, 2008a; Paola, 2016; Pelletier et al., 2015; 

Romans et al., 2016; Straub et al., 2020). Stochastic sediment transport resulting from 

autogenic processes generates noise within a STS, and the resultant stratigraphy, and limits the 

predictability of STS dynamics (Ganti et al., 2014; Hajek & Straub, 2017; Jerolmack, 2011; 

Jerolmack & Paola, 2010; Paola, 2016; Romans et al., 2016; Van De Wiel et al., 2011). The 

duration and magnitude of autogenic processes within STSs determines the structure and 

timescales of autogenic noise present (Griffin et al., 2023; Hwa & Kardar, 1992; Jerolmack & 

Paola, 2010). Autogenic noise has a distinct tripartite structure composed of three noise 

regimes, delimited by two autogenic timescales. The first regime comprises temporal 

correlation (red noise) over short timescales, where spectral power increases as a function of 

period. The second comprises no correlation (white noise) over intermediate timescales, where 

spectral power plateaus. The third regime comprises anti-correlation (blue noise) over long 

timescales, where spectral power decreases of a function of period (Griffin et al., 2023; Hwa 

& Kardar, 1992). Whilst the tripartite structure should be evident in all stochastic natural 

systems, the presence of all three noise regimes depends on the relationship between the 

autogenic timescales; where these timescales converge, power spectra may only display red 

and blue noise (Griffin et al., 2023).  

 The two autogenic timescales denote temporal thresholds for the degradation and detectability 

of sediment flux signals, generated by external environmental perturbations (Griffin et al., 

2023; Jerolmack & Paola, 2010). Whilst signal degradation severely reduces the amplitude in 

comparison to the input signal (‘shredding’), signals can undergo no modification but be 

rendered undetectable, if the signal magnitude is similar to that of autogenic processes (Griffin 

et al., 2023; Jerolmack & Paola, 2010). Therefore, characterizing the temporal structure of 

autogenic processes from a time series of stratigraphic information enables the accurate 

reconstruction of paleo-surface processes, and allows theoretical frameworks which predict the 

degradation and detectability of sediment flux signals in both landscapes and strata to be fully 

utilised (Jerolmack & Paola, 2010; Toby et al., 2019). 
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Theoretical frameworks for signal degradation and detection rely on the full characterization 

of the structure of autogenic processes within a specific STS. This has been achieved for an 

exquisitely preserved time series of sediment flux and preserved deposition rates measured 

from physical experiments (Griffin et al., 2023; Hajek & Straub, 2017; Jerolmack & Paola, 

2010; Toby et al., 2019). However, a time series of stratigraphic information is inherently 

incomplete, owing to the presence of hiatuses over a variety of spatiotemporal scales from 

laminae to basin-scale unconformities, which reduce the preservation of autogenic processes 

within vertical sections (Ager, 1973; Davies et al., 2019; Foreman & Straub, 2017; Jerolmack 

& Sadler, 2007; Kemp, 2012; Sadler, 1981; Schumer & Jerolmack, 2009; Sommerfield, 2006). 

Within all geomorphic environments, variations exist in the duration of depositional, stasis 

(non-deposition) and erosional events, driven by autogenic reorganization, which generates 

hiatal surfaces with a range of frequencies and durations (Hajek & Straub, 2017; Kim & 

Jerolmack, 2008b; Sadler, 1981; Sommerfield, 2006; Straub et al., 2020; Straub & Foreman, 

2018; Strauss & Sadler, 1989; Tipper, 2015; Trampush et al., 2017). As a result, part of the 

original autogenic signal is removed and imposed sediment flux signals can be distorted (e.g. 

Burgess et al., 2019; Foreman & Straub, 2017; Trampush & Hajek, 2017), making it 

challenging to accurately reconstruct sediment-transport processes and detect environmental 

signals from landscapes and strata (Kemp, 2012, 2016; Kemp & Sexton, 2014; Miall, 2015; 

Paola et al., 2018; Straub et al., 2020; Tofelde et al., 2021). Furthermore, limits on our ability 

to date strata mean sediment age is often assigned by linear interpolation between dated 

horizons (Abels et al., 2010; Ramos-Vázquez et al., 2017), providing additional challenges to 

the incompleteness problem by distorting the apparent representation of time in strata, relative 

to true time (Barefoot et al., 2023; Trampush & Hajek, 2017). Hence, fundamental questions 

exist regarding the reliability of strata as an archive of past and future environmental change.  

Analysis of a time series of stratigraphic information assumes a priori that the original, full 

signal of autogenic noise is present and can be reconstructed, without deeply considering the 

impact of incompleteness. Instead, the preserved noise is measured and assumed to accurately 

characterise the full spatiotemporal scales of autogenic processes within landscapes and strata. 

Griffin et al., (2023) find a time series of surface processes generate power spectra with 

tripartite spectral structure, however, it is hypothesised that the lack of blue noise in 

stratigraphic measurables could result from incompleteness, and/or the assumption of linear 

sedimentation rate (Figure 1). This means that the punctuated chronology generated as a result 

of stratigraphic incompleteness could significantly distort the record of autogenic processes 



 

90 
 

(Davies et al., 2019). This has secondary consequences for the detectability of environmental 

signals, which could be significantly reduced due to incompleteness, meaning periodic signals 

could be defined as statistically insignificant, or missed entirely (Foreman & Straub, 2017; 

Griffin et al., 2023; Straub et al., 2020). Although this is predicted, the relationship between 

signal detectability and stratigraphic incompleteness, and a framework to predict signal 

detectability as a function of incompleteness and input signal properties is not yet established 

(Burgess et al., 2019; Foreman & Straub, 2017; Trampush & Hajek, 2017). Understanding how 

incompleteness affects the preserved structure of autogenic processes is of fundamental 

importance for establishing robust confidence limits for signal detectability within 

environmental measurables. 

Here, we quantify 1) how incompleteness modifies the preserved record of autogenic surface 

processes and 2) how incompleteness influences the detectability and apparent degradation of 

environmental signals from a time series of sediment flux. To do this, we utilise a physical rice 

pile as an idealised STS, from which a time series of sediment flux is generated at discrete time 

intervals. The rice pile can provide a basis from which natural STSs and strata can be 

understood, as the complex internal dynamics which arise from storage and release along a 1D 

path elucidate the nature of autogenic processes in field scale systems (Bak et al., 1987; Frette 

et al., 1996; Griffin et al., 2023; Jerolmack & Paola, 2010). The distribution of these sediment 

flux events within the rice pile is heavy tailed, which has also been measured and theorized for 

many field scale systems. However, the statistics of these fluxes are not linked to the same 

processes at play in field-scale systems, hence we do not focus on the specific processes but 

rather the ramifications of having a stochastic time series of sediment flux, bound by process 

timescales and finite size effects. Although the rice pile does not directly generate strata, it 

produces a time series of sediment flux from a single location, which is a measurable attribute 

that links both Earth surface processes and strata (Toby et al., 2022). The time series generated 

is comparable to a time series of stratigraphic measurables collected from a 1D vertical section, 

which provides insight into the complex internal dynamics operating up-system of this location 

(Figure 4.1). Physical rice piles have been utilised to generate theoretical frameworks for the 

signal degradation and detection in STSs (Griffin et al., 2023; Jerolmack & Paola, 2010). Here, 

we advance this framework to understand the effect of incompleteness on the structure of 

autogenic noise and the detectability of environmental signals. This will provide a robust 

framework that can be used to predict the ability of various geomorphic environments to record 

evidence of external environmental perturbations. 
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Figure 4.1: The nature of autogenic processes and the generation of an incomplete stratigraphic record 

(a) Schematic illustration of the physical rice pile run under a constant input rate, highlighting the stochastic sediment flux time-series generated, comparable 

to a time-series of preserved deposition rates produced from natural systems. This generates power spectra with tripartite spectral structure defining two 

autogenic timescales, Trw and  Twb. (b) Autogenic dynamics within the Earth’s surface promote constant system reorganization, causing episodes of deposition, 

erosion and stasis (non-deposition), generating an incomplete time series of sediment flux at a stationary sampling location, defined by the red circle. (c) 

Sedimentary log taken from the red rectangle in Figure 1B. Time series of stratigraphic information, containing temporal gaps and accumulating under variable 

sedimentation rates. If the absolute ages of all remaining sediment are known, the time series contains gaps of varying duration. To overcome this, the time 

series is bound by sparsely dated horizons under the assumption of a linear sedimentation rate between these points. 
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4.2. Materials and methods 

4.2.1. Experimental design 

We use a suite of rice pile experiments presented in Griffin et al., (2023). These experiments 

have precisely controlled boundary conditions and generate a time series of efflux which is 

100% complete, compared to the incomplete time series generated from stratigraphic 

measurables. The experimental apparatus is constructed of two vertical, parallel glass sheets 

0.37 m long, positioned 0.026 m apart (Figure 4.1A). Rice was fed (influx) to the pile from a 

dry particle feeder (Schenk Accurate) positioned 0.008 m from the top surface, allowing a rice 

pile to form at a critical angle so that a dynamic topographic equilibrium was achieved. Over 

the suite of experiments, influx was defined between a minimum and maximum range (0 g s-1 

and 0.78 g s-1 controlled at 1 second intervals via a computer connected to the sediment feeder 

which directly feeds the pile. Efflux was measured at approximately 1 second intervals using 

an Ohaus EX12002 balance (accuracy and precision of 0.1 g). The balance has a maximum 

mass of 12 kg, and all experiments were run until the balance was saturated. The dimensions 

of rice grains used in the experiments have a diameter of 0.0025 ±0.5 m, length of 0.008 ±0.5 

m and an average mass of 0.02 g. The experimental set-up is similar to that of the physical rice 

pile of (Frette et al. 1996) 

We first utilize the control experiment, run with a constant influx rate of 0.37 g s-1. The influx 

rate denotes the mean rate of the sediment feeder, and the experimental run time (nine hours) 

defines the time to saturate the balance at the specified influx rate. This experiment was used 

to quantify the effect of stratigraphic incompleteness on the spectral structure of autogenic 

processes and to generate confidence bands to quantify signal detectability within power 

spectra of tripartite geometry. 

To quantify the effect of incompleteness on signal detectability and apparent signal 

degradation, we utilize 36 experiments run with cyclic influx (where influx rate follows a 

sinusoid) of different periods and amplitudes. To achieve parity with the control experiment, a 

mean influx rate of 0.37 g s-1 was attained for all cyclic experiments. 9 periodicities were 

chosen to cover the range of autogenic timescales present (Figure 4.1): 6s, 12s, 24s, 48s, 100s, 

250s, 500s, 1000s and 2000s. Signal amplitude was chosen as percentages of the mean feed 

rate (0.37 g s-1), increasing in 25% intervals from 25% (0.0925 g s-1) to 100% (0.37 g s-1). 
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4.2.2. The removal and interpolation of time within a time series 

4.2.2.1. Removing time from a time series  

The spectral structure of autogenic processes has been quantified from a 100% complete time 

series (Griffin et al., 2023); we explore the implications of imperfect sampling on the temporal 

by systematically removing data from the time series. The sediment flux time series generated 

from the rice pile is limited to positive values and zeros; positive values are analogous to 

depositional events and zeros are analogous to stasis events. This is comparable to a time series 

of preserved deposition rates generated from natural systems. 

 

Physical experimental results suggest the duration of depositional events (tk) on deltas exhibit 

an exponential distribution (Ganti et al., 2011):  

𝑃𝐷𝐹(𝑡𝑘) = 𝜆𝑒−𝜆𝑡𝑘  

Where λ is a rate parameter which defines the mean number of events in an interval, here set 

to 0.5 so the mean duration of depositional episodes is generally lower than the mean duration 

of temporal gaps (Ganti et al., 2011). This distribution defined the amount of time kept at each 

iteration.  

Conversely, stasis events (tr) within a system exhibit a truncated Pareto distribution (Ganti et 

al., 2011): 

𝑃𝐷𝐹(𝑡𝑟) =  
𝜏𝛾𝜏𝑡𝑟

−𝜏−1

1 − (
𝛾
𝑣)𝜏

 

Where 𝜏 is the tail index which controls the shape of the distribution, 𝛾 is the smallest time step 

removed (here, set to 1) and ʋ is the truncation parameter, which defines the largest time step 

removed (here, set to 650s, which is equivalent to the longest autogenic timescale, Twb, which 

is 650s in the rice pile control experiment (Griffin et al., 2023). This distribution defines the 

amount of time removed at each iteration.  

To generate an incomplete time series, a random number from within the limits of the 

exponential distribution is generated, defining the number of time steps kept. Following this, a 

random number from within the limits of the truncated Pareto distribution was generated, 

defining the number of time steps removed. This pattern was repeated for the full length of the 

time series. Completeness was systematically varied between 100% and 1% by changing the 
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tail index (𝜏) of the truncated Pareto distribution between 3 and 0.05 respectively. We 

acknowledge this is not exactly akin to how stratigraphy is generated; as we utilise the overall 

percentage completeness of a time series, we believe this is comparable to natural systems that 

produce time series with similar overall completeness. This method allows us to explore the 

impact of incompleteness on both the spectral structure of autogenic processes and signal 

detectability. 

The new discrete time series, generated by removing proportions of time contains gaps of 

varying duration. This variable discretization of time resembles the record of autogenic 

processes recorded in stratigraphy that could be produced if the absolute ages of all sediment 

present were known. To generate power spectra from a time series containing gaps of varying 

duration, we use the Lomb-Scargle Periodogram which is the best available technique to 

compute periodicity directly from unevenly sampled data (VanderPlas, 2018). 

4.2.2.2. Interpolation using an assumption of linear sedimentation rate 

The lack of age constraint within stratigraphy means that generating a time series with absolute 

knowledge of time is improbable. Instead, the section in question can be bound by sparsely 

dated horizons under the assumption of a linear sedimentation rate between these points. This 

method is applied to produce linearly sampled time series from many environmental 

measurables (Sadler, 1981; Hofstra et al., 2008; Wu et al., 2013; Martínez-Graña et al., 2016). 

We utilize both these methods in order to compare the spectral structure of autogenic processes 

and signal detectability generated from a time series containing temporal gaps to the record 

influenced by the assumption of linear sedimentation.  We interpolate the degraded time series 

onto a time interval of 1 second between the first- and last-time step using the nearest neighbour 

method, where the interpolated value at the query point is the value at the nearest sample grid 

point. If a linear sedimentation rate is assumed in a time series of stratigraphic measurables, 

beds bounding significant temporal gaps are thicker than average and are hence 

overrepresented in the apparent time. The method of interpolation chosen in this work aims to 

mimic this. To generate power spectra from the linear time series, we utilise the multi-taper 

method (MTM) with 2 tapers (Thomson, 1982).  

4.2.3. Signal detectability and apparent signal degradation 

To make a statistical statement about the presence or not of an influx signal in the power spectra 

generated from a time series of efflux, a statistical model with a good fit to the background 
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noise spectrum must be applied from which confidence bands can be generated (Vaughan et 

al., 2011).  

As blue noise is present within the power spectra, the commonly utilised autoregressive lag 1 

(AR1) model provides a poor approximation of the spectral structure (Figure S4.1). We 

overcome this by constructing a spectral model and suite of associated confidence bands for 

power spectra of tripartite structure through adaptation of the bending power law (BPL) model 

(McHardy et al., 2004; Vaughan, 2010; Vaughan et al., 2011) to account for two spectral 

gradient breaks. The BPL model optimizes a best fit of the function to the data and smoothly 

changes from one power law to another (McHardy et al., 2004): 

𝑆𝐵𝑃𝐿 =
𝑁𝑓−𝛼1

1 + (
𝑓
𝑓𝑏

)
𝛼2−𝛼1 

Where S is the power at a given frequency, f, N is a power-law normalization factor, fb is the 

frequency associated with the bend in the power-law from one trend described with a slope of 

𝛼1 to a second trend described by a slope of 𝛼2. 

We augment this equation to account for two bends in the power spectra and generate the 

double bending power law (DBPL) model; 

𝑆𝐷𝐵𝑃𝐿 =
𝑁𝑓−𝛼1

1 + (
𝑓

𝑓𝑏1
)

−𝛼1

+ (
𝑓

𝑓𝑏2
)

𝛼2−𝛼1 

Where SDBPL is the spectral power at a given frequency, f. N is a power law normalization 

factor, 𝛼1 is the slope of the power law at high frequencies, 𝛼2 is the slope of the power law 

at low frequencies and fb1 and fb2 are the frequencies of the two bends. This equation assumes 

the slope of the power law at intermediate frequencies is zero (white noise). This spectral model 

provides a strong statistical fit to the power spectra generated from the physical rice pile (Figure 

S4.2).  

To quantify signal detectability, the 95% confidence band generated from the DBPL model 

was applied to the power spectra of the efflux. The ratio between the power of the signal spike 

and the power of the 95% confidence band at the imposed periodicity was quantified: if this 

ratio exceeds 1, a signal is considered statistically detectable.  



 

97 
 

To quantify the amount of apparent degradation a signal experiences due to incompleteness, 

we stack the efflux time series into lengths equal to the input period, and take the mean of the 

efflux for each second over the imposed periodicity. From this, we gain a mean ensemble efflux 

to which we fit a sine wave with a period equal to the known input, and are returned an 

amplitude and phase based on the signal present in the mean ensemble efflux. We compare the 

amplitude of the signal evident in the ensemble efflux, to that of the known input signal and 

quantify a percentage similarity (Griffin et al., 2023) 

Data is removed from the time series randomly, hence the detectability and apparent 

degradation of  a sinusoidal sediment flux signal is dependent on the exact data points removed. 

Whilst two time series may have the same completeness, different parts of a sinusoidal signal 

may be removed each time which influences signal degradation and detectability. To quantify 

a representative detectability and apparent degradation for each incompleteness interval, the 

time series was degraded randomly 5 times and an average detectability and apparent 

degradation was quantified. 5 iterations are the minimum number required to stabilize the 

trends seen in Figures 4.4 and 4.5.  

4.3. Results 

4.3.1. Incompleteness on the structure of autogenic processes 

Firstly, we quantify the temporal structure of autogenic processes evident within stratigraphy 

using a time series containing temporal gaps of varying duration (Figure 4.2). This provides 

understanding of how incompleteness alone influences the spectral structure of autogenic 

processes. When power spectra are generated from a time series which is between 100% and 

35% complete, all three noise regimes (red, white and blue noise) are present. As completeness 

decreases beyond 50% the temporal range of the red noise regime is gradually reduced, as short 

time scales are progressively removed from the power spectra; this is indicated by Trw moving 

progressively to the left as completeness decreases (Figure 4.2A). In contrast, the timescales 

over which blue noise persists are consistently present. As completeness decreases, the gradient 

of spectral growth (red noise) and spectral decay (blue noise) both decrease at a linear rate, 

meaning the structure of these noise regimes becomes increasingly difficult to distinguish. 

When completeness is reduced to 50%, the structure of blue noise is lost, rendering the power 

spectra to white noise over all timescales greater than Trw. This is indicated by Twb disappearing 

as completeness decreases below 50% (Figure 4.2A). As completeness is reduced to below 
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35%, short timescales continue to be removed from the power spectra; at 15% complete, all 

timescales less than Trw are removed, rendering the power spectra to solely white noise.  

Secondly, we quantify the structure of these processes evident within an incomplete time series 

where the temporal gaps have been removed through interpolation using the assumption of 

linear sedimentation rate. This is analogous to a time series of stratigraphic information (Figure 

4.3). When the time series is between 100% and 35% complete, all three noise regimes (red, 

white and blue noise) are present within the power spectra. The timescales over which both red 

noise and blue noise persist are consistently present. Although the structure of the red noise 

regime remains easily distinguishable with decreasing completeness, identifying blue noise is 

difficult when completeness is reduced to 50% as the gradient of spectral decay (blue noise) 

decreases. When completeness is below 50%, the structure of blue noise is lost, rendering the 

time series to white noise over all timescales greater than Trw. This is indicated by Twb 

disappearing as completeness decreases below 50% (Figure 4.3A). As completeness is reduced 

to below 35%, Trw gradually increases from 30 seconds to more than 1000 seconds, as high-

frequency noise is added to the time series via interpolation. This is indicated by Trw moving 

progressively to the right as completeness decreases (Figure 4.3A). 

. 
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Figure 4.2: The temporal structure of autogenic processes evident from a time series containing temporal gaps of varying duration 

(a). Power spectra generated from a time series of efflux from the control experiment (influx rate of 0.37 g s-1), where time has been systematically removed in 

approximately 10% intervals as a proxy for stratigraphic incompleteness. The full spectrum is shown in black, with the mean spectra shown in red. The vertical 

dashed lines denote the autogenic timescales, Trw (red) and Twb (blue). The percentages in the bottom right corner of each panel denote the percentage completeness 

(C). The time series utilised is non-linear, to resemble the record of autogenic processes in stratigraphy that could be reproduced if the ages of all sediment were 

known. Due to the temporal gaps within the time series, power spectra have been generated using the Lomb-Scargle periodogram. (b) Variations in the spectral 

gradient (see Figure 4.1) of the red noise regime (top) and the blue noise regime (bottom) as a function of completeness. 
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Figure 4.3: The temporal structure of autogenic processes is evident from a time series where the 

temporal gaps have been removed through interpolation using the assumption of linear 

sedimentation rate 

(a) Power spectra generated from a time series of efflux from the control experiment (influx rate of 0.37 

g s-1), where time has been systematically removed in approximately 10% intervals as a proxy for 

stratigraphic incompleteness. The vertical dashed lines denote the autogenic timescales, Trw (red) and 

Twb (blue). The percentages in the bottom right corner of each panel refer to the completeness (C) of 

the time series. The time series has been interpolated onto a regular time interval to resemble a time 

series produced from stratigraphic measurables where a linear sedimentation rate is assumed. Power 

spectra have been generated using the multi-taper method (MTM) with 2 tapers. (b) Variations in the 

spectral gradient of the red noise regime (left) and the blue noise regime (right) as a function of 

completeness. (c) Variations in Trw as a function of completeness. 

4.3.2. Incompleteness on the detectability of environmental signals 

Firstly, we quantify signal detectability from a time series containing temporal gaps of varying 

duration (Figure 4.4), which provides insight into how incompleteness alone influences signal 

preservation. Signals with periodicity less than Trw are undetectable over all amplitudes within 
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a complete time series due to signal shredding and are therefore undetectable over all 

amplitudes within a time series which is incomplete to any degree (Griffin et al. 2023). High 

amplitude signals (100% of the mean feed rate) with periodicity between Trw and Twb are 

detectable within a complete time series. As completeness decreases, signal detectability also 

decreases, but high amplitude signals over these periodicities remain detectable within a time 

series over all levels of completeness (Figure 4.4). As the amplitude of these influx signals are 

reduced, signal detectability decreases and medium amplitude signals (50% of the mean feed 

rate) with periodicity between Trw and Twb can be rendered undetectable in a time series with 

low completeness. Low amplitude input signals (25% of the mean feed rate) with periodicity 

between Trw and Twb are undetectable within a complete time series as they are obscured by 

autogenic noise (Griffin et al. 2023), hence these signals are undetectable within a time series 

which is incomplete to any degree (Figure 4.4). Long period signals with periodicity greater 

than Twb show enhanced detectability (Griffin et al. 2023), hence high amplitude, long period 

influx signals remain highly detectable within time series over all levels of completeness.  
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Figure 4.4: Signal detectability from a time series containing temporal gaps of varying duration 

The combined effects of signal periodicity, amplitude and stratigraphic completeness on signal 

detectability. Signal amplitude decreases in 25% intervals. 

Secondly, we quantify the detectability of signals from a time series where the temporal gaps 

have been removed through interpolation using the assumption of linear sedimentation rate. 

This is analogous to a time series of stratigraphic information (Figure 4.5). Overall, a divide in 

signal detectability is evident when completeness is approximately 50%. This is intuitive, as 

approximately half the time series, and hence the influx signal, is removed and replaced with 

high-frequency noise. Signals with periodicity less than Trw are undetectable over all 

amplitudes within a complete time series due to signal shredding by autogenic processes and 

are therefore undetectable over all amplitudes within a time series which is incomplete to any 

degree (Griffin et al. 2023) (Figure 4.5). High amplitude signals with periodicity between Trw 

and Twb are detectable within complete time series. As completeness decreases, signal 

detectability also decreases, but high amplitude signals over these periodicities remain 

detectable within a time series overall levels of completeness (Figure 4.5) . As the amplitude 

of the influx signal is reduced, signal detectability reduces dramatically, where medium 

amplitude signals show minimal detectability even within a highly complete time series. Low 
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amplitude input signals are undetectable within a complete time series as they are obscured by 

autogenic noise (Griffin et al. 2023), hence these signals are undetectable within a time series 

which is incomplete to any degree. Signals with periodicity greater than Twb show enhanced 

detectability when completeness is high (Griffin et al., 2023), however as completeness is 

reduced to below 50%, signals become difficult to differentiate from autogenic noise. As the 

amplitude of the influx signal is reduced, the detectability of these long-period signals 

significantly reduces, where low amplitude long-period signals are rendered undetectable when 

completeness is below 80% (Figure 4.5). 

4.3.3. Incompleteness on the apparent degradation of environmental signals 

Autogenic processes degrade sediment flux signals when the amplitude of the signal is less 

than Trw (Jerolmack & Paola, 2010; Griffin et al., 2023). Given this, we explore the apparent 

degradation experienced by environmental signals as a result of incompleteness. Here, apparent 

degradation refers to the reduction in signal amplitude experienced due to incompleteness. This 

is analogous to the reduction in signal amplitude which occurs due to signal shredding (Griffin 

et al., 2023).  

For both time series containing temporal gaps of varying duration, and time series in which 

these gaps have been moved by interpolation, signals with periodicity less than Trw experience 

a severe degradation in amplitude as a result of shredding by autogenic processes and therefore 

are severely degraded within a time series which is incomplete to any degree (Griffin et al., 

2023) (Figure 4.6).  
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Signals with periodicity greater than, but close to Trw experience a gradual increase in 

degradation as completeness decreases, where they are severely degraded when completeness 

is low (<30%). Although degraded, these signals can still be reconstructed by stacking the time 

series over all levels of completeness. Long period signals above Trw and Twb experience 

minimal degradation until completeness is low (<30%) where the recoverable signal amplitude 

is approximately than half of the known input amplitude. 

4.4. Discussion 

4.4.1. The apparent colours of noise in sediment transport systems  

The tripartite spectral structure of autogenic processes is evident from a time series of high 

temporal resolution (Griffin et al., 2023), however the spectral structure of these processes 

preserved in stratigraphy is rarely representative of their true character. Whilst we turn to strata 

as an archive of Earth's surface processes and environments, this record is inevitably 

incomplete (Paola et al., 2018; Sadler, 1981; Schumer & Jerolmack, 2009; Straub & Esposito, 

2013; Straub & Foreman, 2018; Vendettuoli et al., 2019), which hinders and warps our 

interpretation of the spatiotemporal scales of autogenic dynamics present within a STS.  

 

Figure 4.6: The dual role of signal periodicity and stratigraphic incompleteness on apparent signal 

degradation. 

(a). Apparent signal degradation from time series containing temporal gaps of varying duration. (b) 

apparent signal degradation from time series where the temporal gaps have been removed through 

interpolation using the assumption of linear sedimentation rate. Signal degradation is not influenced by 

signal amplitude (Griffin et al. 2023), hence apparent signal degradation has only been quantified for 

signals with amplitudes equivalent to 100% of the mean feed rate.  
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Stratigraphers have long known that all stratigraphic sections are incomplete (Ager, 1973; 

Hutton, 1788; Sadler, 1981), hence efforts have been made to understand the circumstances 

which allow for the reconstruction of environmental signals from incomplete records, 

encompassing both autogenic timescales and the properties of environmental signals (e.g. 

Foreman & Straub, 2017; Kemp & Sexton, 2014; Trampush et al., 2017). However, the impact 

of incompleteness on the spectral structure of autogenic processes has not been deeply 

considered, as the preserved noise is assumed to accurately characterise the full spatiotemporal 

scales of autogenic processes within landscapes and strata. We show the importance of also 

understanding the noise removed in the process. As completeness decreases, the preserved 

record is less faithful to the full spectrum of autogenic processes, hindering our ability to 

reconstruct paleo-surface processes. However, the structure of the resulting power spectra can 

provide stratigraphers with an approximate evaluation of completeness, from which the full 

spectral structure can be estimated. Quantifying the change in spectral growth and decay as a 

function of completeness allows us to infer the structure and strength of paleo-surface processes 

from an incomplete record and hence to some extent recreate the autogenics within a STS.  

Although blue noise is common in power spectra generated from a time series of Earth surface 

processes with sufficient duration (e.g. Benavides et al., 2022; Lazarus et al., 2019; McKean 

& Roering, 2004; ), evidence of this regime within power spectra generated from stratigraphic 

measurables is generally rarer (e.g. Aziz et al., 2008; Perron & Huybers, 2009; Vaughan et al., 

2011) (Figure 6). Our results suggest this is predominantly due to stratigraphic incompleteness 

filtering the preservation of surface processes, where one effect is to remove evidence of blue 

noise. The magnitude of the autogenic events associated with this spectral regime generates a 

system-scale response (e.g. the largest autogenic events within a system of a defined size). 

However, the rarity of these events within a STS renders them more likely to be removed (Ganti 

et al., 2020), or at least significantly reduced in scale, from a time series of stratigraphic 

measurables. The removal of the Elwha Dam in Washington, USA released 20 million tons of 

sediment, generating a huge sediment wave downstream and initiating a rapid aggredational 

response (Ritchie et al., 2018). Although the response to this event was large, the associated 

geomorphic imprint rapidly waned, and channel incision dispersed the deposits of the initial 

sediment wave (East et al., 2018), which could massively reduce the stratigraphic evidence of 

this event. Furthermore, the sedimentary record at one locality in a STS may not record 

evidence of all sediment-transport events, as the signal may not be of sufficient magnitude to 

propagate and deposit downstream. For example, a 500 million ton sediment pulse generated 
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in response to knickpoint collapse on the Rio Coca, Ecuador occurred in the upstream reach 

but is undetectable at the mouth of the Amazon (Crespo et al., 2024). Field evidence over a 

range of scales suggests stratigraphy is more likely to record mundane, common transport 

conditions (Ganti et al., 2020). This means small-scale sediment-transport events can be 

removed entirely from the record, but their high frequency allows for regularity in preservation. 

Although the time series in question may not record the full extent of autogenic processes, this 

does not mean they are absent within the system; care must be taken to differentiate these 

concepts. To ensure the most accurate reconstruction of autogenic dynamics within a STS, we 

must aim to reduce the requirement to interpolate a time series as much as possible. Absolute 

knowledge of time is unattainable; instead a high sampling resolution allows temporal gaps to 

be minimized and result, as much as possible, from incompleteness alone. This will allow 

scientists the ability to identify and account for as many unconformities as possible, as well as 

develop techniques to improve the messy conversion from space to time (Barefoot et al., 2023).  

 

Figure 4.7: The spectral structure of autogenic processes preserved within surface and stratigraphic 

measurables. 

Top: Power spectra generated from time series of surface processes, where all spectra show evidence 

of red and blue noise, hypothesised to be universal. Data taken from: Benavides et al., (2022); Lazarus 

et al., (2019); McKean & Roering (2019). Bottom: Power spectra generated from a time series of 

stratigraphic measurables, where the full spectral structure of autogenic processes is not present in the 
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majority of the spectra shown. Data taken from: Aziz et al., (2008), Vaughan et al., (2011), Perron & 

Huybers (2009). 

The preservation of blue noise within power spectra generated from a time series of 

stratigraphic information (either physical measures or chemical data as a proxy for an 

environmental change) is infrequent, but we highlight that some studies find evidence of blue 

noise (Figure 4.7) (Abels et al., 2013; Dunkley Jones et al., 2018; Kurokawa et al., 2019; Liu 

et al., 2023; Pas et al., 2020). However, blue noise is often discounted to apply the 

autoregressive lag 1 (AR1) spectral estimation model. The ease of visually identifying the noise 

regimes present within power spectra is dependent on how the data is displayed (Figure 4.8). 

Power spectra generated from stratigraphic measurables are commonly displayed with a linear 

frequency axis, which allows alleged periodicity to be equated to cycles per meter. This 

impedes the identification of the noise regimes present. In this case, blue noise appears as a 

sharp drop in power at low frequencies that is easily missed, especially when the rest of the 

power spectra appear to resemble a sloping continuum from low to high frequencies common 

with a red noise process (Weedon, 2003). This can explain the common thought that stochastic 

variations in sediment transport are characterised in power spectra by red noise, where the 

spectral rollover to white noise is thought to define the upper limits of stochasticity within a 

STS (Jerolmack & Paola, 2007, 2010; Meyers, 2012; Vaughan et al., 2011; Weedon, 2003). 

Instead, displaying the same data with a logarithmic period axis allows the full spectral 

structure to be visualized and interpreted with more clarity (Figure 4.8). Therefore, the tripartite 

spectral structure of autogenic processes may not be as rare as thought, but instead, 

misinterpreted. We must now look beyond the traditionally assumed Gaussian noise models 

and instead establish realistic expectations of the structure of autogenic variability produced 

and also preserved in the stratigraphic record (Grove et al., 2022; Tu et al., 2023). This 

highlights the requirement to understand the true temporal structure of autogenic processes 

within a system, and how to best analyse the data before inverting spectra for paleo-surface 

process interpretation and signal detectability. Accounting for blue noise within power spectra 

generated from stratigraphic measurables has significant implications for generating estimates 

of spectral background structure from which confidence bands are produced to determine the 

presence of environmental signals (Hajek & Straub, 2017; Vaughan et al., 2011). The AR1 

model, which assumes the power spectra only contain red noise over high frequencies and 

white noise over low frequencies, is commonly applied to all power spectra generated for 

paleoclimate analysis, as the presence of blue noise is often overlooked. If the AR1 model is 
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applied to power spectra that contain blue noise, the model would generate confidence bands 

where the expected power at low frequencies will be underestimated relative to the true power 

of the spectra. This means the transition to blue noise could be confused with a statistically 

significant periodicity, resulting in false positives and spurious signals (Hajek & Straub, 2017).  

Although incompleteness has minimal impact on the spectral structure of autogenic processes 

until a time series is less than 50% complete at common discretization timescales, we do not 

include other time-reducing effects. Alongside incompleteness, low measurement resolution 

and/or the utilization of short temporal records can further hinder the preservation of autogenic 

processes. Although blue noise should be evident within a time series of moderate 

completeness, in reality, evidence of the full tripartite spectral structure may be removed if the 

time interval of measurement is shorter than the maximum autogenic timescale, or due to the 

short time series studied. Whilst the length of the time series available from stratigraphic 

measurables is bound by outcrop availability or the length of core extracted, to achieve the best 

estimate of autogenic spectral structure the measurement resolution utilised should be 

considered carefully to allow for the most thorough temporal sampling. Although we can 

control these factors to some extent, a time series of stratigraphic measurables is already 

substantially hindered if the time series is significantly incomplete. Further work should focus 
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on understanding the effects of measurement resolution on the structure of autogenic processes 

and work to define an optimal measurement resolution for stratigraphic time series analysis.  

4.4.2. Quantifying signal detection and degradation from an incomplete record 

To overcome poor age constraints within stratigraphic sections, sediment age is linearly 

interpolated between sparsely dated horizons (Abels et al., 2013; Ramos-Vázquez et al., 2017); 

however, incompleteness and substantial interpolation can hinder our ability to differentiate 

signal degradation and detection timescales. The loss of blue noise from power spectra due to 

incompleteness impedes our ability to quantify Twb. This means the maximum timescale of 

autogenic organization and the timescales of faithful signal preservation over all amplitudes 

Figure 4.8: Power spectra generated from the control experiment (influx rate of 0.37 g s-1) with both 

autogenic timescales, Trw and Twb, highlighted. 

Top: Power spectra plotted as a function of period, where the x-axis is displayed logarithmically. The 

tripartite spectral structure is evident. Bottom: Power spectra plotted as a function of frequency, 

where the x-axis is displayed linearly. The spectra appear to resemble a sloping continuum from low 

to high frequencies common with a red noise process, however the presence of blue noise is evident at 

low frequencies by the sharp drop-off in spectral power. 
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cannot be quantified (Griffin et al., 2023). However, this timescale has been predicted to be of 

similar magnitude as the compensation timescale, Tc (Griffin et al., 2023). Tc can be defined 

from stratigraphy (Wang et al., 2011), hence allowing for approximation of Twb. The substantial 

interpolation of stratigraphic time series can drive the red-to-white noise transition (e.g. Trw) to 

longer timescales (Figure 3), extending the duration of apparent correlation due to the addition 

of high-frequency noise via interpolation. This generates an apparent spectral Trw, which can 

be over an order of magnitude larger than the true Trw, and hence an apparent shredding regime. 

If Trw is known, this extended red noise regime can be differentiated into true and apparent red 

noise and the true shredding timescales can be defined. However, the reliance on power spectra 

to quantify Trw means signals with periodicity over all apparent red noise timescales will appear 

shredded when instead incompleteness renders them undetectable.  

Incompleteness also has direct ramifications for the detectability and reconstruction of 

environmental signals from stratigraphic measurables. Incompleteness has been described as 

having power-limiting effects on signals (Kemp, 2012), where the power of the signal spike is 

significantly diminished when compared to the signal spike from a complete time series. 

Therefore, a signal that only just breaches the 90% confidence band is the best we can hope for 

(Hilgen et al., 2015; Kemp, 2012). We show that when the absolute ages of all sediment present 

in the time series are known, the impact of incompleteness on signal detectability is minimal. 

The direct effects of incompleteness are less than previously described (e.g. Hilgen et al., 2015; 

Kemp, 2012) and instead, poor geochronology and the assumption of a linear sedimentation 

rate causes a significant reduction in signal detectability. The assumption of linear 

sedimentation rate can cause signals to be undetectable from within a highly incomplete time 

series unless the signal is of high amplitude or the periodicity exceeds Twb. This means that 

many meso-timescale environmental forcings (those with periodicity less than Twb, and span 

timescales between 101 and 104 years (Sheets et al., 2002), may experience a severe 

detectability decrease, and hence be difficult to detect within a time series.  

Furthermore, Blum & Hattier-Womack (2009) calculate that a change in temperature due to 

Milankovitch scale climatic forcing may result in a change in sediment yield of 20-50% 

according to the empirical BQART model (Syvitski & Milliman, 2007). This would generate 

a low amplitude sediment flux signal with an amplitude of 25% of the mean feed rate; we show 

that such signals are rendered undetectable within highly incomplete time series. If the time 

series of interest becomes incomplete over timescales comparable to known environmental 

signals, the assumption of a linear sedimentation rate causes a severe detectability decrease 
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where these signals may be rendered undetectable in the time series. This challenges our ability 

to extract subtle environmental signals from field measurements with limited exposure and 

current methods (Straub et al., 2020; Toby et al., 2019).  

However, we highlight that the amplitude of the spectral peak present within an incomplete 

time series will always be the minimum spectral amplitude for the signal in question. This 

could result in evidence of signals being missed within a power spectrum, as the signal power 

has been reduced to similar magnitude to the power of autogenic noise. Due to the detectability 

reduction with decreasing completeness, if a measurable response is produced from an 

incomplete time series, the true signal would naturally produce a much larger response. 

Although true, this must still be treated with caution. The 95% confidence band denotes the 

95th percentile of the data, hence 5% of the noise will consistently breach the confidence band. 

If part of the transport system noise occurs at a periodicity of known external forcing (e.g. 

Milankovitch-forced climatic periodicity) then it could be assumed as periodicity and justified 

due to the spectral amplitude reduction. To overcome this, a simplistic remedy was proposed 

by defining a detection threshold where the probability of false detections is low; the global 

(99.95%) confidence band (Vaughan et al., 2011). This is a strong statistical solution, however, 

the power reduction due to incompleteness could mean signals cannot always be detectable at 

this level (Meyers, 2019). Whilst low significance levels may lead to false positive signals, 

high significance levels could lead to false negative signals, and generate competing problems 

(Hilgen et al., 2015). We highlight the use of Twb as the timescale of faithful signal transfer, 

even from highly incomplete stratigraphic sections (Griffin et al., 2023). However, a pathway 

for future work is to quantify from field data whether the raised detection threshold is too harsh 

for detecting signals from incomplete records, and how much this threshold should be raised 

by to produce a realistic and accurate signal detectability threshold.  

Incompleteness impacts signal degradation less than signal detectability, but removing time 

from a time series still has consequences for reconstructing environmental signals. Although 

we show that signals with periodicity above Trw still resemble the known input signal over all 

degrees of completeness, when completeness is low (e.g. below 20%) the reconstructed signal 

amplitude can be degraded to half of the true signal amplitude. This amplitude reduction is not 

as severe as the amplitude reduction caused by signal shredding, but this apparent degradation 

combined with the apparent increase in Trw could allow these signals to appear shredded. We 

highlight these signals have not experienced shredding by autogenic processes, but have been 

degraded in amplitude by incompleteness, which affects the structure of the signal recorded in 
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a time series. These signals could potentially be reconstructed if the signal periodicity (e.g. the 

periodicity of Milankovitch-scale orbital forcing) was known. Therefore, multiple realizations 

of the time series could be stacked at this periodicity, which could aid the reconstruction of 

environmental signals rendered undetectable by incompleteness. However, interpolation onto 

a linear sedimentation rate brings significant error into the reconstructed time series, as the 

proportions of the input signal preserved in each time interval are not linear, making this 

method generally unfeasible. Methods to improve the signal detectability from a time series of 

stratigraphic information without using linear interpolation have been suggested (e.g. 

Trampush & Hajek, 2017), however a pathway for future work is to investigate the effect of 

various methods of interpolation on signal detectability.  

4.4.3. Detection and reconstruction of sediment supply signals form 

stratigraphic measurables 

The theoretical framework can be used to guide the interpretation of sediment-supply signals 

from a time series of stratigraphic measurables, providing we have knowledge of stratigraphic 

completeness, the properties of the input signal and the compensation timescale, Tc. Over short 

timescales (101 - 103 years), completeness is set by the maximum magnitude of fluctuations in 

sedimentation, controlled by the internal, stochastic dynamics of a STS. However, over long 

timescales (104 - 105 years), completeness shows little variation as sedimentation is controlled 

by subsidence, resulting in a completeness exponent close to 1 (Jerolmack & Sadler, 2007). To 

highlight differences between STS, we note that channelized depositional environments 

generally have shallower short-term completeness exponents than non-channelized 

depositional environments; by concentrating sedimentation into a narrow zone, channels 

increase the rapidity and noisiness of sediment accumulation (Jerolmack & Sadler, 2007). using 

the short-term completeness exponents for different depositional environments, and using half 

the period of the imposed signal as the minimum discretization timescale (according to the 

Nyquist sampling theorem), we can ascertain an estimated completeness for a time series of 

stratigraphic measurables that might contain an imposed signal.  

This framework can be applied in two ways depending on whether the information sought is 

an estimate of signal detectability (forward application) or signal properties (inverse 

application). Both applications can be applied to time series of information which contain 

temporal gaps (Figure 4.4) and those which have undergone interpolation (Figure 4.5). The rice 

pile only allows for the analysis of surface fluxes due to the lack of subsidence. When applying 
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this framework to a time series of stratigraphic information we suggest normalizing the 3D 

space by the compensation timescale, Tc, which represents the maximum timescale of 

autogenic organization within stratigraphy and marks the transition from transient to persistent 

rates of sedimentation (Straub et al., 2020). Hence, Tc is the smallest discretization timescale 

necessary to obtain a complete stratigraphic record (Straub et al., 2020). 

The forward application of this framework provides an estimate of signal detectability and the 

ratio of the signal spike to the 95% confidence band. This provides more certainty when 

identifying potential signals from a time series of stratigraphic information. The estimated ratio 

of the signal spike to the 95% confidence band generated can be for either a time series which 

contains temporal gaps (e.g. Figure 4.4), or a time series where temporal gaps have been 

removed by linear interpolation (e.g. Figure 4.5). The benefit of this, is that it allows for the 

detectability of the original signal to be compared to the expected detectability after linear 

interpolation. As an example, we can utilise Figure 4.5 to approximate whether a 40kyr 

Milankovitch signal will be detectable within a power spectrum generated from a linearly 

interpolated time series of stratigraphic measurables from the Mississippi Delta. The y-axis of 

Figure 4.5 requires knowledge of signal periodicity (40kyr). To quantify signal amplitude, and 

hence utilise the correct amplitude subplot, we assume a change in sediment input flux (signal 

amplitude) of approximately 50% (Blum & Hattier-Womack, 2009). The x-axis of Figure 4.5 

requires an estimate of stratigraphic completeness. The database of depositional environments 

provides a short-term incompleteness exponent for delta’s of ∝ = 0.44, allowing us to estimate 

completeness as: 𝐶 = 𝑎(
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑑𝑡

𝑇𝐶
)∝, where a is approximately 1, the discretization dt is 

half input signal periodicity, (20kyr), and Tc is the compensation timescale; 200kyr for the 

Mississippi Delta (Li et al., 2016).Using these values, we calculate a completeness of C = 36% 

for the Mississippi Delta. We can then place the signal within all 3 axis of the framework to 

estimate the expected ratio of the signal spike to the confidence band. We estimate this ratio as 

~1.5; this signal would breach the confidence band but detectability is low. 

The inverse application of this framework provides an estimate of the true amplitude of the 

imposed signal, which is generally difficult to quantify first-hand. Although identification of 

signal periodicity takes precedence in cyclostratigraphy, we provide a novel method to quantify 

the imposed signal amplitude which is commonly unknown. As an example, we can utilise the 

trends in Figure 4.5 to approximate the absolute amplitude of a Milankovitch signal identified 

within a power spectrum generated from a linearly interpolated time series of soil lightness 



 

114 
 

taken from the Bighorn Basin, USA (Abels et al., 2013), where a spectral spike that breaches 

the 99% confidence band is evident. Due to the linear interpolation of stratigraphic information 

onto a regular time series, we emphasize that the ratio input will be the minimum signal 

detectability. The y-axis of Figure 4.5 requires knowledge of signal periodicity (20kyr). To 

place the signal within the coloured matrix, we utilise the known ratio of the signal spike to the 

confidence band (~2). The x-axis of Figure 4.5 requires an estimate of stratigraphic 

completeness. The depositional environment of this strata has been interpreted as channelized 

alluvial plain (Abels et al., 2013),  providing a short-term completeness exponent of ∝ = 0.17, 

allowing us to estimate completeness as: 𝐶 = 𝑎(
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑑𝑡

𝑇𝐶
)∝, where a is approximately 1, 

the discretization dt is half the input signal periodicity, (10 kyr), and Tc is the compensation 

timescale; 67kyr for the Bighorn Basin (Straub et al., 2020). Using these values, we calculate 

a completeness of C=72% for the Bighorn Basin. We can then place the signal on the correct 

amplitude subplot to estimate the expected signal amplitude.  We estimate this to be 25% of 

the mean feed rate.  

We stress that the framework presented is merely a guide for the signal detectability within 

stratigraphic measurables. Time series of stratigraphic information from different locations 

within the same STS may have similar estimated completeness, but the instances of time 

preserved may differ, and hence change the exact signal preserved. In the framework presented 

the time series was degraded randomly 5 times to stabilize the trends and an average 

detectability and apparent degradation was quantified. Although we utilise the average 

detectability and apparent degradation for this framework, we find that for the same degree of 

completeness, signal detectability can range by ±7% and signal degradation by ±10% 

depending on the time intervals removed in each iteration. Hence, we highlight the uncertainty 

in these estimations. This framework can provide a conceptual path forward for signal detection 

from stratigraphic measurables, however, this needs to be tested within field scale systems. 

Application of this framework allows stratigraphers the ability to quantitatively justify the 

interpretation of environmental signals in landscapes and strata and also offers a new direction 

for defining robust confidence limits for signal detectability.   

4.5. Conclusions 

• Incompleteness and the linear interpolation of time between dated horizons distort the 

true autogenic signal, hence defining the true nature and timescales of autogenic 

processes can be improbable when completeness is low. 
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• The preservation of the true autogenic signal within stratigraphic measurables is 

problematic, however the ease of visually identifying the structure of autogenic noise 

can be impeded by how the data is displayed. This highlights the requirement to 

understand how to analyse stratigraphic data before inverting spectra for paleo-surface 

process interpretation and signal detectability 

• Incompleteness has consequences for signal detectability, where signals over all 

periodicities can be rendered undetectable if completeness is low. However poor 

constraints on time hinder signal detectability further.  

• We develop a framework that can predict signal detectability and reconstruct signal 

properties using an estimate of completeness, which enables stratigraphers to 

quantitatively justify the presence of environmental signals within stratigraphic 

measurables. This provides better constraints on the structure of autogenic processes 

evident from landscapes and strata, but also improves understanding of the records in 

which information about paleoenvironmental variability may be best preserved. 
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This chapter advances on the theoretical framework presented in Chapter 3 and investigates 

how stratigraphic incompleteness controls the preservation of Earth surface processes and the 

detectability of environmental signals from the stratigraphic record (Research Question 2). The 

removal of time from the stratigraphic record influences the temporal structure of autogenic 

processes preserved, where blue noise and eventually red noise is removed from the power 

spectra under low levels of completeness (Objective 2.1). However, interpolation of a time 

series using the assumption of linear sedimentation rate has much stronger influences on the 

structure and timescales of surface processes preserved, where blue noise is removed from the 

power spectra and the short autogenic timescale, Trw, is modified due to the addition of high 

frequency noise (Objective 2.2). This influences the detectability of environmental signals, 

where signals over all periodicities and amplitudes can be rendered undetectable when 

completeness is low, however signal detectability is further hindered by interpolation 

(Objective 2.3). 
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Supplementary material for chapter 4 

 

Figure S4.1: The fit of various spectral models to the power spectra generated from the 

physical rice pile control experiment, where influx rate is 0.37 g s-1. 

(Left) The poor fit of the autoregressive lag 1 (AR(1)) model to the power spectra generated from the 

physical rice pile. (Middle) The strong fit of the bending power law (BPL) model to the red and white 

portions of the power spectra generated from the physical rice pile. (Right) The strong fit of the double 

bending power law (DBPL) model to the full power spectra generated from the physical rice pile. 

Figure S4.2: The fit of the double bending power law model to the power spectra generated from the 

physical rice pile under different rates of constant input. 

The strong fit of the double bending power law (DBPL) model to power spectra run under input rates 

of: (a) 0.02 g s-1, (b) 0.041 g s-1, (c) 0.25 g s-1, (d) 0.37 g s-1, (e) 0.6 g s-1 and (f) 0.78 g s-1.  
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5. Turning the volume down: How does the magnitude of autogenic noise in a sediment 

transport system influence the preservation of environmental signals? 

This chapter is currently in preparation for submission: Griffin, C., Duller, R.A., Straub, 

K.M., & Higham, J.E. Turning the volume down: How does the magnitude of autogenic noise 

in a sediment transport system influence the preservation of environmental signals? 

Abstract 

Internal (autogenic) processes generate noise within sediment transport systems, where the 

frequency and magnitude of autogenic noise sets thresholds for the degradation and 

detectability of environmental sediment flux signals in landscapes and strata. The nature and 

timescales of autogenic noise, and hence signal propagation thresholds, have been quantified 

for sediment transport systems with strong sediment storage and release dynamics. However, 

the magnitude of autogenic processes varies across and within landscapes, which may influence 

the thresholds for the degradation and detectability of sediment flux signals. We explore how 

the magnitude of autogenic noise within a sediment transport system controls the temporal 

structure of autogenic processes within power spectra, and how this influences the degradation 

and detectability of periodic external environmental perturbations. To do this, a time series of 

sediment flux generated from an idealised numerical granular pile, which experiences minimal 

variation in sediment transport rates, is compared to that of a physical rice pile, which 

experiences large fluctuations in sediment transport rate. The magnitude of autogenic noise 

does not affect the structure and timescales of autogenic processes within a sediment transport 

system. However, it is evident that the detectability of environmental signals is dependent on 

the magnitude of noise within the system. Evidence of stochastic resonance is also found, 

evidenced by signals experiencing no degradation and heightened detectability when the 

periodicity of the input signal is equal to the maximum duration of autogenic processes. This 

can provide a theoretical basis that can be used to understand how signal detectability varies 

between sediment transport system segments. This also provides understanding as to the  

environments and records which may best preserve evidence of palaeo-surface processes and 

environmental variability. 

5.1. Introduction 

Sediment transport rates across the Earth’s surface experience fluctuations over a range of 

spatiotemporal scales, which arise due to local episodes of sediment storage and release and 

are known as autogenic processes. Autogenic processes are pervasive within all geomorphic 
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environments (Murray et al., 2014; Paola, 2016; Allen, 2017), including but not limited to 

palaeosol development, alluvial fan development, bed and bar form migration, shoreline 

progradation, delta growth and the morphology of submarine fans (Kraus & Aslan, 1995; Muto 

et al., 2007; Kim & Jerolmack, 2008; Clarke et al., 2010; Fick et al., 2017; Hajek & Straub, 

2017; Lazarus et al., 2019). Even in the absence of external (allogenic) forcing, autogenic 

processes cause variations in sediment transport capacity across a landscape which generates 

STS instability and triggers landscape reorganisation (Kim & Jerolmack, 2008; DeAngelis, 

2012; Hajek & Straub, 2017; Kwang & Parker, 2019). This generates noise within a time series 

of sediment flux over a wide range of autogenic frequencies; from minutes to millions of years 

(Coulthard & Van De Wiel, 2007; Jerolmack & Sadler, 2007; Kim & Jerolmack, 2008; 

Jerolmack & Paola, 2010; Jerolmack, 2011; Romans et al., 2016; Hajek & Straub, 2017). The 

duration and magnitude of autogenic processes within a specific segment of a sediment 

transport system (STS) determine the structure and timescales of autogenic noise present 

(Jerolmack & Paola, 2010; Griffin et al., 2023; Tu et al., 2023), where autogenic noise has a 

tripartite spectral structure composed of three noise regimes (Hwa & Kardar, 1992; Griffin et 

al., 2023). Two autogenic timescales (Trw and Twb) delimit the temporal extent of each noise 

regime, and set temporal thresholds for the degradation and detectability of environmental 

sediment flux signals (Jerolmack & Paola, 2010; Griffin et al., 2023). Degradation of 

environmental signals refers to the ability of autogenic processes to severely reduce the 

amplitude of short period input signals (e.g., signal shredding), whereas detectability refers to 

our ability to differentiate the presence of a signal spike from autogenic noise. Signals which 

are of similar magnitude to autogenic processes are described as obscured (Morris et al., 2015), 

as they have undergone no direct modification. Understanding the extent and structure of 

autogenic noise within a STS provides a basis from which to extract and reconstruct paleo-

surface processes, and quantify the ability of a STS to propagate and preserve evidence of 

environmental signals (Jerolmack & Paola, 2010; Straub et al., 2020; Toby et al., 2022).  

The structure and timescales of autogenic processes have been hypothesised to be universal 

within all STSs (Griffin et al., 2023). However spatial variations in sediment properties mean 

the thresholds for sediment transport within and across the Earth’s surface are landscape 

dependant (Jerolmack, 2011; Bracken et al., 2015; Harries et al., 2019; Benavides et al., 2022). 

For example, the initiation of sediment transport on hillslopes requires the slope and pore 

pressure to surpass specific thresholds (Rustomji & Prosser, 2001; Schneider et al., 2008; 

DiBiase et al., 2017), which generally generates large magnitude, infrequent sediment transport 
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events (Roering et al., 2001). In contrast, sediment transport in channelized systems (e.g. rivers 

and deltas) occurs if critical flow strengths for a particular grain size are exceeded (Schneider 

et al., 2008). As the frequency of sediment transport events increases, and the magnitude of 

these events decreases, as sediment transport switches from bedload to suspended load 

(Kleinhans & van Rijn, 2002; Benavides et al., 2022). The more infrequent the sediment 

transport events, the greater the magnitude of sediment transport fluctuations (and noise) within 

a STS (Benavides et al., 2023). Therefore, every geomorphic environment, and sub-

environments within these, will have its own bounds on the magnitude and duration of sediment 

transport fluctuations experienced (Trampush & Hajek, 2017; Toby et al., 2022).  

Previous work has highlighted the existence and importance of autogenic magnitude thresholds 

for predicting the detectability of environmental signals within landscapes and strata (e.g. 

(Jerolmack & Paola, 2010; Trampush & Hajek, 2017; Toby et al., 2019; Hein & Ashton, 2020). 

Jerolmack & Paola, (2010) utilised a numerical rice pile to propose a magnitude threshold (M) 

above which short period input signals are detectable within a time series of sediment flux. M 

is expected to scale with the maximum size of autogenic events within the system, i.e., M ~ 

L2Sc, where Sc is the critical slope. In the numerical rice pile, M represents the maximum 

volume of rice effluxed over the longest avalanche. Hence for a short period signal to be 

detectable, the signal amplitude must exceed this volume. Furthermore, Toby et al., (2019) 

developed this theory and found that the threshold for the storage of sediment flux signals in 

stratigraphy is governed by a time-dependant magnitude threshold. This threshold is set by the 

maximum scales of autogenic storage, bypass and release within a STS over the time window 

of interest. Therefore, the longer the signal duration, the smaller the amplitude required for the 

signal to be detectable. Both these studies highlight that when the magnitude of a sediment flux 

variation is not sufficiently greater than the natural autogenic variability within a STS, the 

signal will be rendered unidentifiable at the terminus of a STS or in the resulting strata.  

The specific sediment transport mechanics within a STS determine the magnitude of autogenic 

noise present (Tresch & Strasser, 2011; Ganti et al., 2014; Harries et al., 2019; Toby et al., 

2022). However, a current bias exists towards quantifying autogenic processes within 

geomorphic environments where large-scale sediment transport fluctuations are dominant 

(Jerolmack, 2011), e.g. hillslopes (Hasbargen & Paola, 2000; McKean & Roering, 2004), 

bedload sediment transport in fluvial systems (Singh et al., 2010; Benavides et al., 2022), 

deltaic systems (Kim & Jerolmack, 2008; Van Dijk et al., 2009) and alluvial fans (Goehring et 

al., 2021). Consequently, defining the spatiotemporal scales of sediment transport, and hence 
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thresholds for signal detectability, in environments with less sediment storage potential is in its 

infancy, for example, suspended sediment dominant systems. The inclusion of suspended 

sediment within a STS is hypothesised to increase the efficiency of signal propagation, which 

may lower the amplitude required for degraded signal to be detectable (Pizzuto et al., 2017), 

however this is yet to be quantified. Importantly, anthropogenic impact (i.e. dam building, 

deforestation land use variations) causes dramatic alterations in the volume of suspended 

sediment transported. This has consequences for both the morphology of STS and also the 

ability of a STS to propagate and record sediment flux signals (Weltje & von Eynatten, 2004; 

Dai et al., 2009; Restrepo et al., 2015; Dethier et al., 2022).  

Here, the full temporal structure of autogenic processes is characterised and the associated 

timescales quantified within a STS where the magnitude of sediment transport fluctuations, 

and hence autogenic noise, is low. This will provide understanding as to how sediment storage 

potential within a STS influences the thresholds for the degradation and detectability of 

environmental sediment flux signals. A theoretical framework for the degradation and 

detection of environmental signals over the full range of autogenic timescales has been 

generated using a physical rice pile. In this study, this is expanded to understand how systems 

with less sediment storage potential propagate and degrade high frequency signals, which 

influences signal detectability. This is crucial for understanding which environments allow for 

the accurate reconstruction of past environmental signals, and to predict the response of STSs 

to current and future anthropogenically induced change. To do this, an idealised numerical 

granular pile is utilised, generated as a discrete element model (DEM) containing weak stick-

slip dynamics, as an analogue for a STS with less sediment storage potential. Like a rice pile, 

a numerical granular pile can provide a basis from which natural STS are understood, as these 

granular systems can elucidate the nature of autogenic processes in a variety of field scale 

systems, depending on the nature of the granular medium used. Whilst 1D cellular automata 

sandpiles have been heavily utilised to understand avalanche dynamics (e.g Bak et al., 1987; 

Hwa & Kardar, 1992; Frette et al., 1996; Kutnjak-Urbanc et al., 1996; Manna, 1999; Malthe-

Sørenssen et al., 2001; Carreras et al., 2002; Pradhan, 2021) this is yet to be studied using a 

DEM that bridges the gap between numerical and physical granular experiments (Ajmal et al., 

2020). The results of the DEM are compared to that of a physical rice pile, where the magnitude 

of stick-slip dynamics, and hence autogenic noise, is much greater. From this, the ability of 

DEM’s to replicate the dynamics present within physical experimental systems can be 

evaluated. 
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5.2. Methods 

5.2.1. MFiX-DEM set-up 

This study employs MFiX (Multiphase Flow with Interphase eXchanges) version 21.4, 

developed by the National Energy Technology Laboratory (NETL), freely available from the 

U.S. Department of Energy (DOE) at https://mfix.netl.doe.gov. MFiX is an open-source, 

multiphase flow solver written in FORTRAN that can be used to study the complex flow 

behaviours present in fluid-solid systems (Darabi et al., 2011). In MFiX-DEM, the discrete 

element method (DEM) is used to describe solids at a particle level. The solid phase is 

represented by individual particles (Lagrangian approach), each with a defined diameter and 

density (Garg et al., 2012). In the DEM, particle-particle and particle-wall interactions are 

resolved and the time integration is undertaken using Newton’s second law of motion 

(Gopalakrishnan and Tafti, 2013). Particle collisions within the model are resolved using the 

soft-sphere model of Cundall and Strack, (1979). In the soft-sphere model, particle collisions 

are treated as a continuous process that occurs over a finite time. These collisions are based on 

physically realistic interaction laws using empirical values for the spring stiffness coefficient, 

dissipation constant and friction coefficient (Li et al., 2012). The gas phase of the DEM is 

treated as a continuum (Eulerian approach), allowing it to be modelled using the continuum 

conservation equations of mass, momentum and energy (Li et al., 2012). The full details of the 

model are outlined in Chapter 2, and the governing equations and a detailed verification study 

of the MFiX-DEM was undertaken by Garg et al., (2012). 

In this work, a quasi-2D idealised granular pile was generated as a DEM in order to utilise the 

pure granular model as the fluid phase is not considered. The granular pile in the computational 

domain was constructed of two vertical, parallel walls 0.03 m long, positioned 0.002 m apart 

(Figure 2.4), to resemble the physical rice pile set-up. Grains were fed (influx) to the pile via a 

point source inlet, generated as a 0.08 x 0.06 m region, allowing only individual particles to 

enter the domain increasing accuracy in the influx rate. Influx rate can be precisely defined 

over an infinite range by defining an influx rate in kg s-1 using the MFiX GUI. The grains 

utilised in the model are spherical, with a diameter and density of 0.003 m and 1250kg m-3 

respectively; the properties of these particles can be found in Table 1. Grains can leave the 

domain via a defined outlet region; efflux cannot be measured directly in the DEM but the 

number of particles in the model can be recorded. Throughout the model run, the evolution of 

the pile was monitored by saving data in .csv files at a defined time interval (here defined at 

https://mfix.netl.doe.gov/
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0.001 s). The data saved in the output files include: particle ID, X, Y and Z velocity and X, Y 

and Z coordinates for each particle present. 

To reduce the computational time, an initial run was completed to pre-assign particles into a 

granular pile. This consisted of inputting 11,311 particles into the model domain to form a 

small granular pile. After the run was completed, the particle coordinates were saved and 

velocities reset to 0, generating an input file used in all the numerical granular pile experiments. 

Although the granular pile geometry was partially pre-defined within the model domain, at the 

start of each run the particles within the model needed to stabilise and build the pile to the 

maximum angle of repose which took approximately 2000s of model time. The total model run 

time for all experiments was set to 32,000s; comparable to the time required to saturate the 

balance during the control experiment of the physical rice pile experiments.  

Firstly, a control experiment was run with a constant influx rate of 0.00018 kg s-1, equivalent 

to 10 grains s-1. This influx rate is comparable to the control experiment of the physical rice 

pile. This experiment was used to define the full spectral structure generated by the numerical 

granular pile and quantify autogenic timescales evidence from rollovers between spectral 

regions.  

To explore how the numerical granular pile shreds high-frequency signals and hence render 

them undetectable in the output flux, a matrix of 10 experiments were run with cyclic influx of 

different periods and amplitudes. To achieve parity with the control experiment, a mean influx 

rate of 0.00018 kg s-1 (10 grains s-1) was attained for all cyclic experiments. The periods of the 

influx signals were chosen to only span the range of red noise timescales within the control 

experiment. This is because efforts are focused on understanding how the stochasticity of 

sediment transport dynamics influences signal shredding potential. The periodicities chosen 

increased in 10-second intervals from 10 s to 70 s. To explore the effect of signal amplitude on 

signal degradation and detectability, a signal with a period of 40 s was imposed, but gradually 

decreased signal amplitude. For parity with the control experiment, all the imposed signals 

share the same mean feed rate (0.00018 kg s-1) but decrease in amplitude from 0.00018 kg s-1 

(10 grains s-1) to 0.0000035 kg s-1 (2 grains s-1). 

5.2.2. Physical rice pile experiments 

The suite of rice pile experiments presented in Griffin et al., (2023) were utilised. As the 

idealised numerical granular pile was built to the same specification as the physical rice pile, 
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this allows for direct comparison between the temporal structure of the power spectra and 

associated autogenic timescales.  

The experimental apparatus is constructed of two vertical, parallel glass sheets 0.37 m long, 

positioned 0.26 m apart. Rice was fed (influx) to the pile from a dry particle feeder (Schenk 

Accurate) positioned 0.008 m from the top surface, allowing a rice pile to form at a critical 

angle so that a dynamic topographic equilibrium was achieved. Over the suite of experiments, 

influx was defined between a minimum and maximum range (0 g s-1 and 0.78 g s-1 controlled 

at 1 s intervals via a computer connected to the sediment feeder which directly feeds the pile. 

Efflux was measured at approximately 1 second intervals using an Ohaus EX12002 balance 

(accuracy and precision of 0.1 g). The balance has a maximum mass of 12 kg, and all 

experiments were run until the balance was saturated. The dimensions of rice grains used in 

the experiments have a diameter of 0.0025 ±0.5 m, length of 0.008 ±0.5 m and a mass of 0.02 

g. The experimental set-up is similar to that of the physical rice pile of Frette et al., (1996). 

The control experiment, run with a constant influx rate of 0.37 g s-1, was first used. The influx 

rate denotes the mean rate of the sediment feeder, and the experimental run time (9 hours) was 

defined by the time to saturate the balance at the defined influx rate. This experiment was used 

to compare the sediment transport dynamics and the structure of autogenic processes between 

the physical rice pile and numerical granular pile.  

To explore how the limits of signal shredding and signal detection vary with the stochasticity 

of sediment transport dynamics, 12 experiments run with cyclic influx (where influx rate 

follows a sinusoidal pattern) of different periods and amplitudes were utilised. To achieve 

parity with the control experiment, a mean influx rate of 0.37 g s-1 was attained for all cyclic 

experiments. 3 periodicities were chosen to cover the range of autogenic timescales evident 

within the red noise regime: 6s, 12s and 24s. The amplitude of the cycles were chosen as 

percentages of the mean feed rate (0.37 g s-1), increasing in 25% intervals from 25% (0.0925 g 

s-1) to 100% (0.37 g s-1). 

5.2.3. Time series analysis for signal detectability and degradation 

Power spectra were generated from the efflux time series from each set of experiments using 

the multi-taper method (MTM) with 2 tapers. Key autogenic timescales can be observed by 

eye on the power spectra as ‘roll-overs’ or ‘gradient-breaks’. To delimit these timescales 

accurately the ‘findchangepts’ function in MATLAB was employed. This function is controlled 



 

124 
 

by two key input parameters: the maximum number of significant changes and the type of 

change to detect (e.g. variations in mean, standard deviation, gradient). For the spectra, 2 

changes are specified (to account for the presence of two rollovers in the spectra) and use linear 

as the type of change to detect, applied on log-transformed spectral data. This method detects 

changes in the mean and slope of the input spectra, which can be inverse log transformed to 

solve for the power-law exponent of the fit. 

To make a statistical statement about the presence or not of an influx signal in the power spectra 

of the efflux from the end of the pile, a confidence band is required. To quantify signal 

detectability from the numerical granular pile, the 95% confidence band generated from the 

DBPL model (see Chapter 4) was applied to the power spectra of the efflux. To quantify signal 

detectability from the physical rice pile experiments, a 95% confidence band was generated 

using 25 realizations of the control experiment (see Chapter 3). The ratio between the power 

of the signal spike and the power of the 95% confidence band at the imposed periodicity was 

quantified: if this ratio exceeds 1, a signal is detectable.  

To quantify the amount of degradation a signal experiences within both the numerical and 

physical experiments, the efflux time series is stacked from the end of the pile into lengths 

equal to the input period, and take the mean of the efflux for each second over the imposed 

periodicity. From this, a mean ensemble efflux is gained to which a sine wave is fitted with a 

period equal to the known input signal and return an amplitude and phase based on the signal 

present in the mean ensemble efflux. The amplitude of the signal evident in the ensemble efflux 

is compared to that of the known input signal and quantify a percentage similarity. Within both 

the numerical and physical experiments, the degradation of signals within the efflux time series 

taken from the end of the granular pile is quantified.  

5.3. Sensitivity analysis for parameter calibration within the numerical granular pile 

One limitation of the MFiX-DEM is that it is only capable of modelling perfectly spherical 

grains. However, whilst the system cannot exactly replicate a rice pile, it offers the opportunity 

to study a system with different sediment transport mechanics, and hence variations in the 

magnitude of storage and release processes. To accurately achieve this, the rest of the domain 

and granular material properties must be comparable between both systems. Sensitivity 

analysis methods are commonly employed to determine the influence of different individual 

parameters and how combinations of parameters affect target performance. This can then be 

used to match the properties of a DEM to those of the related physical system (Guo et al.,  
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2023). Although these methods are generally utilised to calibrate microscale properties of 

granular materials, sensitivity analysis methods can be used to quantify the influence of 

individual properties on the macroscopic behaviour of the bulk material (Katterfeld et al., 

2019). 

The granular pile in the computational domain was built to the same specification as the 

physical rice pile apparatus. The diameter and density of the grains within the numerical 

granular pile were set to correspond to those of the rice used in the physical experiments. 

However, other microscale physical parameters were difficult to quantify directly, namely 

those controlling grain contacts and interactions. Here, those parameters which simultaneously 

influence intergranular contacts as well as the contact between the grains and the domain 

boundaries are the friction coefficient (FC) and the coefficient of restitution (CoR) (Figure 

S5.1). The FC combines both the rolling and sliding resistance of individual grains during 

motion, which impacts strain localization and the thresholds for granular motion (e.g. the 

stickiness of a grain, to both other grains and the walls of the domain) (Tang et al., 2019). The 

greater the FC, the ‘stickier’ the grains and hence the more resistance between the particles. 

The CoR is the material property which indicates the ratio of the normal relative velocity before 

a granular collision to the normal relative velocity after a granular collision (Tang et al., 2019). 

In the numerical granular pile, this will affect the dissipation of kinetic energy during granular 

collisions (e.g. how bouncy grains are). The greater the CoR, the lower the energy dissipation 

during a granular collision as the grains do not bounce.   

To quantify the effect of both parameters on the dynamics of the granular pile, two key 

variables were analysed: granular temperature (GT) and the number of particles within the 

model as an analogue for avalanche size. Firstly, the GT provides an index of the level of 

collisional activity within a granular flow (Gollin et al.,  2015; Taylor-Noonan et al., 2021), 

where the higher the GT, the greater the number of interparticle collisions (Duan & Feng, 

2017). This provides a quantitative measure of the ability of a granular material to flow, and 

an understanding of how energy is passed through a granular medium (Gollin et al.,  2015; 

Higham et al.,  2019). Although the flow in question will have a bulk mean velocity, collisions 

between neighbouring particles will cause random fluctuations in particle velocity away from 

a group mean. For a field of particles each with a known velocity per time step, the GT of a 

particle is calculated by comparing the velocity of each individual particle to the group mean, 

and averaging the square of these velocity fluctuations (Taylor-Noonan et al., 2021): 
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𝐺𝑇(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) =  √𝑉𝑥2 +  𝑉𝑦2 + 𝑉𝑧2 

Where Vx is the x component of particle velocity, Vy is the y component of particle velocity 

and Vz is the z component of particle velocity. Due to the high computational power required 

to record the velocities of individual particles, in this analysis, an ensemble mean GT per 

experiment is generated, where the mean x, y and z velocities of the whole system are recorded 

per second, from which GT is calculated. To do this, the mean x, y and z velocities of all the 

particles in the computational domain per time step were measured, from which a bulk GT per 

second is calculated. This is then averaged to generate a singular GT value, which describes 

the mean GT over the whole duration of the experiment. Secondly, a time series of the number 

of particles within the computational domain is analysed, which provides us with information 

on the size of avalanches and hence the magnitude of storage and release processes, as a 

function of both FC and CoR.  

To analyse the effect of both parameters on GT and avalanche distributions, a matrix of 625 

experiments were run, where the coefficient of restitution and the friction coefficient were both 

varied between 0.1 and 1.0 in intervals of 0.0038 (Figure 5.1). A short run time of 1000s was 

utilised for this initial matrix; this was chosen to reduce computational time whilst capturing a 

broad overview of system dynamics from which a reduced matrix can be defined for more 

detailed analysis. 

Firstly, GT variations as a function of FC and CoR were studied. A region of very high granular 

temperature is present when the CoR is high (Figure 5.1A). Comparison of this with the 

avalanche dynamics reveals this is caused by the instantaneous collapse of the granular pile, 

where over 90% of the grains left the system after the model run began (Figure 5.1B,C). This 

was therefore defined as the upper limit of the CoR which could be used in the numerical 

granular pile experiments. A region of high GT is also evident when the FC is low (e.g. less 

than 0.25), where above this threshold GT is consistently low across the matrix (Figure 5.1A). 

The avalanche dynamics reveal that this region of high GT is generated due to the occurrence 

of systematic large avalanches approximately every 150 s (Figure 5.1C). As these runs 

contained minimal small avalanches due to the system constantly regrading, this was defined 

as the lower limit of the FC which could be used in the numerical granular pile experiments. 

The rest of the matrix shows minimal variation in granular temperature. Here, avalanche 

dynamics show stronger storage and release potential evidenced by a constant pile 
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accumulation (ramping up geometry) and the occurrence of small avalanches (Figure 5.1C). 

These model runs do not show evidence of any system-clearing events. 

Figure 5.1: Large-scale sensitivity analysis of the MFiX-DEM numerical granular pile. 

(a) Variations in granular temperature (GT) as a function of both the friction coefficient (FC) and the 

coefficient of restitution (CoR), for all 625 possible combinations of the parameters. (b) Classification 

of each of the 625 experiments runs according to the magnitude of avalanche dynamics within the 

model. All the experimental runs were classified according to 5 categories, dependant on the magnitude 

and frequency of the avalanches experienced over the duration of the experiment. (c) Examples of the 

avalanche dynamics within the five categories defined in (b). 

 

This large-scale sensitivity analysis allowed combinations of FC and CoR to be eliminated that 

produced unrealistic dynamics, for example the instant collapse of the pile. However, this also 

revealed a large region of consistently low GT which needed a longer experimental run time to 

reveal the full range of dynamics. This encompasses all the experiments which only 

experienced small avalanches or show ramping up geometry (Figure 5.1C). Due to limits on 

computational time, the size of the experimental matrix was reduced further to significantly 

increase the run time. To provide more constraint on both parameters, estimates of both the FC 

and CoR were utilised from previous work on physical rice piles. Firstly, the CoR for the rice 
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used in the physical experiments was estimated to range between 0.5 and 0.55 (Wang et al., 

2021). Secondly, estimates of the FC can be made from the angle of repose of the granular 

material (Beakawi Al-Hashemi & Baghabra Al-Amoudi, 2018; Madrid et al., 2022), which 

was found to range between 32 to 38 degrees, hence providing a FC in the range of 0.62 and 

0.8. This allowed a smaller matrix of 28 experiments to be defined which was run for 20,000s. 

For the smaller experimental matrix with increased run time, variations in GT were re-analysed 

and the avalanche dynamics present (Figure 5.2). Across the matrix, GT showed minimal 

variation even with significantly increased run time, where the standard deviation of the GT 

was only 3x10-5. To understand this, the variations in GT were compared to the avalanche 

dynamics present. Comparing all the parameter combinations, a clear cluster of runs were 

evident showing similar internal dynamics and sharing similar mean ensemble GT. Due to this 

lack of variation, a combination of parameters that fell in this range were chosen: a CoR of 0.5 

and a FC of 0.7. 

 

Figure 5.2: Reduced scale sensitivity analysis of the MFiX-DEM numerical granular pile. 

(a) Variations in granular temperature with changing friction coefficient and coefficient of restitution 

across the 28 parameter combinations used in the reduced matrix. (b) Stochastic avalanche dynamics 

within the 28 experiments showing a cluster of experiments with similar internal dynamics. 

 

5.4. Results 

5.4.1. The temporal structure of autogenic processes 

To understand the ability of the numerical granular pile to degrade environmental signals and 

also influence their detectability, the magnitude of the storage and release processes must first 
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be characterised. This allows the temporal structure and timescales of autogenic processes 

intrinsic to the MFiX-DEM to be quantified. 

Constant influx to the numerical granular pile generates a range of avalanche event sizes, from 

1 grain sec-1 to 90 grains s-1. The probability distribution of these avalanches throughout the 

time series is exponential (light-tailed) (Figure 5.3A), highlighting that small events are 

dominant, and the chance of occurrence of an extreme event is nearly zero (Ganti et al., 2011). 

Although the system has a different probability distribution to that of the physical rice pile, the 

distribution evident in the output from the numerical granular pile agrees with the distribution 

of avalanche sizes observed within physical sandpile models (Malthe-Sørenssen et al., 1999; 

Carreras et al., 2002). Whilst the efflux from both the numerical granular pile and physical rice 

pile is similar to the influx (Figure 5.3B), highlighting both systems evolve to an equilibrium 

state, the granular systems achieve this through different internal dynamics. The physical rice 

pile experiences repeated cycles composed of long periods of aggradation, followed by rapid 

system-scale avalanches. Instead, the numerical granular pile experiences consistently small 

avalanche events of the same magnitude as the influx, and does not experience avalanche 

events on the order of system size (Figure 5.3B).  

Although the systems show differences in the distribution of avalanche sizes, the power spectra 

generated from both the MFiX-DEM and the physical rice pile show parity in structure when 

run under a similar rate of constant influx (Griffin et al., 2023). Both experimental systems 

exhibit three noise regimes defined by two distinct changes in the gradient of the power spectra 

(Figure 5.3C). The first regime comprises red noise (temporal correlation), whereby spectral 

power increases as a function of period. The spectral gradient, α, of the correlated noise regime 

generated from the numerical granular pile is 0.56, in comparison to 2.2 for the physical rice 

pile. The upper temporal limit of correlated noise denotes a characteristic autogenic timescale, 

Trw (Griffin et al., 2023), which is approximately 30 seconds for both granular systems. The 

second regime comprises white noise, where spectral power plateaus, indicating events over 

this timescale are temporally uncorrelated. The upper temporal limit of white noise denotes a 

characteristic autogenic timescale Twb (Griffin et al., 2023) , which occurs at comparable 

timescales within both granular systems; 550 seconds for the numerical granular pile and 650 

seconds for the physical rice pile. The third regime comprises anti-correlated noise over 

timescales greater than Twb, whereby spectral power decreases as a function of period. The 
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spectral gradient, α, of the anti-correlated noise regime generated from the numerical granular 

pile is -0.58, in comparison to -2 for the physical rice pile. 
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Figure 5.3: Time series of mass efflux from the MFiX-DEM numerical granular pile control 

experiment (10 grains s-1) versus the physical rice pile control experiment (~10 grains s-1).  

(a) Distribution of avalanche sizes throughout the time series, where the numerical granular pile shows 

an exponential distribution and the physical rice pile shows a heavy-tailed distribution. We highlight 

the difference in y-axis on the efflux plots, where the efflux from the MFiX-DEM is up to an order of 

magnitude less than the physical rice pile (b) Comparison of the internal dynamics of both the numerical 

granular pile and physical rice pile under constant influx rate. The physical rice pile undergoes cycles 

of aggradation followed by rapid efflux, whereas the numerical granular pile only experiences a 

continuous, low variance flux (c) Power spectra generated from a time series of efflux measured from 

the end of the numerical granular pile and the physical rice pile using the multi-taper method. Both 

power spectra show tripartite geometry composed of red, white and blue noise, where spectral gradient 

breaks between the regimes mark two timescales: Trw and Twb.  
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5.4.2. The degradation and detectability of environmental signals  

Autogenic processes have the ability to degrade signals and/or render them undetectable in the 

output flux (Jerolmack & Paola, 2010; Griffin et al., 2023). Degraded signals are those that 

have experienced a severe reduction in amplitude during propagation through the granular 

system. Detectable signals are those signals that produce a peak within a power spectrum that 

exceeds the 95% confidence band. Here, the focus is solely on the degradation and detectability 

of high-frequency input signals, hence the periodicities of the signals were limited to below 70 

seconds (Figure 5.4).  

Input signal periodicity is the primary control on signal degradation, in the same manner as the 

physical rice pile. Trw sets an upper limit to the timescales over which signals experience 

significant degradation (Figure 5.5A). Here, the smaller the signal periodicity below Trw, the 

greater the amount of degradation a signal experiences. It is noted that signal amplitude does 

not influence the amount of degradation a signal experiences; signals of the same periodicity 

are degraded by equal amounts regardless of their input amplitude (Figure 5.5A, inset figure). 

In comparison, signals with periodicity greater than Trw experience significantly less 

degradation, where the output signal amplitude is more than 70% similar to the known input 

signal. However, within the numerical granular pile, evidence of a signal bump when the input 

signal periodicity is equal to Trw is present, highlighting stochastic resonance. At this 

periodicity, the input signal experiences no degradation.  

Within the numerical granular pile, signals over all periodicities above and below Trw are highly 

detectable in the output flux (Figure 5.5B). However, signal detectability also increases as a 

function of input signal period. This directly contrasts the results from the physical rice pile, 

where signals with periodicity less than Trw are statistically undetectable in the output flux over 

all amplitudes (Griffin et al.,  2023). In the numerical granular pile, signal amplitude influences 

the detectability of signals. The greater the amplitude of the signal, the greater the ratio of the 

spectral peak to the confidence band (Figure 5.5, inset figure). When the signal periodicity is 

equal to Trw, signals also experience significantly enhanced detectability as a result of stochastic 

resonance.  
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Figure 5.4: Power spectra generated from a suite of numerical granular pile experiments with 

imposed signals in the form of cyclic grain influx. Spikes in power spectra at the imposed periodicity 

highlight the presence of imposed signals. 

Power spectra from 3 numerical granular pile experiments with imposed periodicity of 10 seconds (a) 

40 s (b) and 70 s (c). Whilst the period of the input signals was systematically increased, the amplitude 

was held constant at 10 grains s-1
. However, to understand the effect of amplitude, 3 experiments were 

run with a period of 40 s, but with decreasing amplitude (c); the structure of these imposed signals is 

shown in (d). We highlight that the spectral structure is not influenced by the additional of external 

forcing, however the absolute power of the spectra is influenced by the addition of external forcing; the 

greater the signal amplitude, the greater the power over all periodicities. The imposed influx signals 

are shown in relation to both autogenic timescales Trw and Twb by the dashed red lines. 

 

 



 

134 
 

 

 

Figure 5.5: Degradation and detectability of environmental signals within the numerical granular 

pile and physical rice pile. 

(a) Signal degradation as a function of input period, measured by comparing the known input signal to 

the signal evident in the efflux. Inset figure shows signal degradation as a function of signal amplitude, 

utilising signals with a periodicity of 40 s and 48 s for the numerical granular pile and physical rice 

pile respectively. (b) Signal detectability as a function of input period, is measured by comparing the 

power of the spectral spike and the power of the 95% confidence ban at the imposed periodicity. If the 

ratio of signal spike to confidence band is greater than 1, define by the horizontal line, the signal is 

detectable in the output flux. Inset figure shows signal detectability as a function of signal amplitude, 

utilising signals with a periodicity of 40 s and 48 s for the numerical granular pile and physical rice 

pile respectively. 

5.5. Discussion 

5.5.1. Signal degradation and detectability in systems with low transport system 

noise 

The magnitude of the storage and release dynamics, and hence autogenic noise, is small within 

the numerical granular pile. However, power spectra generated from a time series of sediment 

flux maintain the tripartite spectral structure previously quantified (e.g. Griffin et al., 2023; 

Hwa & Kardar, 1992; Kutnjak-Urbanc et al., 1996). This distinctive spectral structure was 

advocated to arise from autogenic processes in numerous STSs due to finite size effects (Ganti 

et al., 2011). Whilst the size of the avalanche events may be up to an order of magnitude smaller 

within the numerical granular pile compared to the physical rice pile, the geometry of the 

domain still sets limits on the duration and size of the largest avalanche (Jerolmack & Paola, 

2010; Ganti et al., 2011; Griffin et al., 2023). However, the largest avalanche within the 
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numerical granular pile is not on the order of system size (e.g. a wedge failure event) due to 

the lack of strong stick-slip dynamics which results in minimal internal storage. Instead, this 

event is more localized, where one large region within the granular pile system may fail at a 

given time. Nonetheless, correlation within both systems is defined by the duration of 

individual avalanche events (Hwa and Kardar, 1992). Hence it is unsurprising that the 

autogenic timescales, Trw and Twb are of similar absolute value due to the identicality in system 

geometry and rate of influx. Hence, further evidence is provided for the potential universality 

of the temporal structure of autogenic processes. The tripartite spectral structure and key 

timescales should be present within STSs with different sediment storage potential. 

Trw within the numerical granular pile provides an upper limit to the timescales over which 

signals experience shredding in the same manner as the physical rice pile. These short period 

input signals (T<Trw) experience a severe reduction in amplitude during propagation as they 

are of similar magnitude to the natural autogenic fluctuations within the system. Although the 

sediment storage potential varies considerably between granular systems, the amount of 

degradation experienced by signals of similar periodicity is comparable. This suggests that the 

fractional amount of degradation an environmental signal experiences could be solely 

dependent on the input signal periodicity. However, this needs further testing within natural 

and experimental STS. From this knowledge, a database of expected signal degradation could 

be constructed as a function of both signal periodicity and the length of the STS in question. 

To achieve this, future work should investigate signal degradation as a function of STS length 

and aim to test if this theory holds for STS of differing lengths.  

Whilst the fractional degradation of high-frequency signals is comparable between the granular 

systems, the detectability of imposed signals differs significantly, where severely degraded 

signals T<Trw are highly detectable within the output flux of the numerical granular pile. 

Therefore, within systems with lower sediment storage potential, Trw does not provide a lower 

temporal threshold for signal detection as it does in the physical rice pile. This means that 

although high frequency signals still experience severe degradation, they need not be of large 

amplitude to exceed the magnitude of transport system noise to be detectable. Alongside this, 

low amplitude signals T>Trw are unlikely to be obscured in the output flux, as likewise to 

degraded signals, any imposed periodicity will likely be greater than background noise levels 

within a STS. As the magnitude of the autogenic processes within a STS sets the threshold for 

signal detectability (Toby et al., 2019), this could vary significantly between segments of a 
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STS depending on the nature of the autogenic processes present (Toby et al., 2022). Therefore, 

this could aid or hinder the detectability of high frequency signals.  

Previous work has hypothesised that a method to maximize the preservation of sediment flux 

signals is to eliminate nonlinearity from the system, hence reducing the noise and the ability of 

the system to mix up signals (Jerolmack & Paola, 2010). In this analogy, high sediment storage 

potential (generating high transport system noise) could be equated to turbulent flows with 

significant mixing. On the other hand, low sediment storage potential (generating low transport 

system noise) are more analogous to laminar flows, which promote the linear convolution of 

an input signal but with added noise (Jerolmack & Paola, 2010). The numerical granular pile 

does not produce completely linear dynamics. However, sediment storage potential  is 

significantly reduced compared to the physical rice pile or 1D cellular models of granular 

systems with strict sediment transport thresholds (e.g. Bak et al., 1987; Hwa & Kardar, 1992; 

Malthe-Sørenssen et al., 1999; Manna, 1999). Minimising sediment storage capacity does not 

reduce the amount of degradation a signal experiences as previously suggested. Instead, this 

maximises the detectability of environmental signals and guarantees faithful signal transfer 

over all periods and amplitudes. However, this has implications when interpreting the influence 

of autogenic processes on signal preservation. As severely degraded signals produce a highly 

detectable response, the process of signal shredding could be overlooked. In previous work, 

detecting the presence of environmental signals from a time series of stratigraphic measurables 

has taken precedence over reconstructing signal properties (Vaughan et al., 2011; Meyers, 

2012; Tjiputra et al., 2023), especially when searching for evidence of well-studied 

environmental forcing (e.g. Milankovitch scale climatic forcing). However, it can be 

highlighted that signal detectability does not guarantee the accurate reconstruction of paleo-

signal magnitude. For example, the Palaeocene-Eocene Thermal Maximum (PETM) was a 

significant, mesotimescale global climate change event (McInerney & Wing, 2011), where the 

signal periodicity was likely shorter or equal to Trw for many stratigraphic records (Trampush 

& Hajek, 2017; Straub et al., 2020). The signal of this event may be detectable within 

stratigraphy (Dunkley Jones et al., 2018; Duller et al., 2019). However, using the absolute 

record of this event would underpredict the magnitude of Earth-surface process change that 

should be expected from future global warming events. Therefore, the use of Trw to accurately 

describe the preservation of short-period input signals is emphasised. By comparing the input 

signal periodicity to Trw, it can be ascertained as to whether the signal periodicity and amplitude 
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have been preserved (i.e., the signal has not been shredded), or just the periodicity (i.e., the 

signal has been shredded). 

This work focuses on the propagation and preservation of high-frequency input signals. 

However, the similarity of the results between both granular systems allows us to hypothesize 

that Twb will provide a timescale over which signals experience heightened detectability in the 

same manner as the physical rice pile. A pathway for future work will be to understand the 

detectability of long-period input signals within systems with low transport system noise and 

explore the nature of Twb as a threshold for enhanced signal detection. 

5.5.2. Stochastic resonance within sediment transport systems 

Whilst all signals with periodicity T<Trw experience significant degradation, for influx signals 

T=Trw evidence of a stochastic resonance behaviour is found (Benzi et al., 1981; Gammaitoni 

et al., 1998; Wellens et al., 2004). This behaviour was not observed within the physical rice 

pile as an influx signal with T=Trw was not imposed. However, Jerolmack & Paola, (2010) 

found hints of this behaviour within a 1D cellular rice pile model but the effect was never fully 

quantified. The occurrence of resonance at T=Trw is rational as the signal periodicity is of the 

same duration and magnitude as the largest avalanche within the numerical granular pile. At 

this periodicity, the imposed sediment flux signal experiences no degradation during 

propagation down-system, and the spectral spike at the imposed periodicity is amplified by 

approximately 500%. This behaviour has been identified previously during the saltating of sand 

grains by wind in desertified territories, resulting in a spectral amplification of approximately 

700% (Gorchakov et al., 2013). However, resonance is a common phenomenon with numerous 

applications in physics, chemistry, biomedical science, engineering, climatology and more 

recently the response of landscapes to climatic forcing (Benzi et al., 1982; Nicolis, 1993; 

Ganopolski & Rahmstorf, 2002; Andersson et al., 2011; Godard et al., 2013; Falanga et al., 

2020; Alkhayuon et al., 2023). 

Noise is generally viewed as inconvenient when transferring and detecting environmental 

signals. However, stochastic noise can play a useful role in enhancing detection of weak 

periodic signals in nonlinear systems (Hänggi, 2002). This finding hints that some landscapes 

can respond, and sometimes amplify, the preservation and detectability of sediment flux signals 

(Godard et al., 2013; Romans et al., 2016). Nevertheless, the potential for a system to amplify 

the preservation of an external signal will depend on the timescales of autogenic processes 

within the system and the duration of the imposed forcing. The short autogenic timescale, Trw, 
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has been hypothesised to equate to the maximum timescale of river avulsion, Ta, or within a 

single deltaic system, a system-wide lobe movement event and associated compensational 

filling of topography (Jerolmack & Paola, 2007; Straub, 2019; Griffin et al., 2023). The 

avulsion frequency of many natural delta systems has been found to vary between 10 years 

(e.g. the Huanghe Delta) and 140 kyr (e.g. the Mississippi Delta) (Jerolmack & Mohrig, 2007; 

Chadwick et al., 2020), highlighting the potential for signals generated by Milankovitch scale 

climatic forcing to experience resonance. Due the long periodicity of Milankovitch forcing, 

resonance is most likely to occur in larger river systems, where the aggradation thickness 

necessary for avulsion is large. This would extend the avulsion frequency to the order of 

thousands of years (Chadwick et al.,  2020). Resonance within STS would result in the external 

signal exhibiting enhanced detectability within a time series of Earth surface processes (Godard 

et al., 2013). Therefore, if  these sediment flux signals generate sedimentary deposits of greater 

thickness (Foreman & Straub, 2017), this would suggest a stronger likelihood of signal 

preservation within the resulting strata. This may allow the signal to be detectable despite the 

spectral power reducing effects of stratigraphic incompleteness (Kemp, 2012; Hilgen et al., 

2015).  

It is not explored as to how either granular system responds to a signal with periodicity T=Twb. 

This timescale has been hypothesised to equate to the equilibrium timescale, Teq (Paola et al., 

1992), and the compensation timescale, Tc (Wang et al., 2011) within field scale systems. 

Resonance at this periodicity is unlikely as Twb represents a topographic filling timescale rather 

than an event duration timescale, however future work must quantify the interaction of imposed 

periodicity with this longer autogenic timescale. Tc of many natural delta systems has been 

found to vary between 6 kyr (e.g. The Rhine) and 370 kyr (e.g. the Orinoco) (Li et al., 2016; 

Supplementary Material), which could also resonate with external environmental perturbations 

(e.g. Milankovitch scale climatic forcing) and amplify the response. Evidence for, and the 

understanding of, resonance in field scale STS is in its infancy. However, if this phenomenon 

exists in STS, this could aid the reconstruction of certain paleo-environmental signals from 

both landscapes and strata. This would provide crucial insights to predict how future 
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anthropogenic environmental signals will interact with autogenic processes within STS to 

garner a detectable response in strata. 

5.5.3. Signal detectability within different geomorphic environments 

The scale of autogenic noise within a STS is determined by the frequency and magnitude of 

sediment storage and release processes which determines the transmission and hence 

detectability of environmental signals within landscapes and strata (Blum et al., 2018; Swanson 

et al., 2019; Savi et al., 2020; Tofelde et al., 2021). In both the physical rice pile and numerical 

granular pile, the temporal extent of correlation (red noise less than Trw) is defined by the 

duration of individual avalanche events. This is also found within 1D granular cellular 

automata models that evolve by stochastic toppling rules, which are a common method used to 

study the avalanche dynamics within granular systems (e.g. Bak et al., 1987; Christensen et 

al., 1996; Hwa & Kardar, 1992; Jerolmack & Paola, 2010). Whilst all three granular systems 

may share events of similar duration and magnitude (providing domain size and input 

conditions are comparable) the sediment storage potential, levels of autogenic noise produced 

and hence signal detection thresholds differ significantly.  

Jerolmack & Paola (2010) utilised a 1D cellular automata model to understand the propagation 

and detectability of high-frequency sediment flux signals. This system employs strict sediment 

transport thresholds where grains entering the model instantly ‘stick’ at the input location and 

only move when the stability threshold at each specific point is exceeded. Jerolmack & Paola 

(2010) found a strict signal detectability threshold, where shredded signals (T<Trw) were 

obliterated and hence rendered undetectable in the output flux. The significant fluctuations 

between long episodes of stasis and large sediment release events in the model generate high-

magnitude autogenic noise within the system, meaning signals must be of even larger 

amplitude to be detectable (Jerolmack & Paola, 2010). This system has high sediment storage 

potential, of which a natural analogue is hillslopes (Figure 5.6) (Benda et al., 2005; DiBiase et 

al., 2017; Eekhout et al., 2023). Hillslopes experience sediment transport events of all sizes 

(Stark & Hovius, 2001), with the largest being a landslide, that occur after the threshold for 

failure has been exceeded (Medwedeff et al., 2020). However, hillslope sediment is likely to 

be temporarily sequestered by topographic variability, which then remains in storage and 

eventually fuels subsequent landslides (DiBiase et al., 2017; Clapuyt et al., 2019; Tilahun et 

al., 2022). This high sediment storage potential means that the sediment associated with 

periodic influx signals is not conveyed efficiently down-system and is instead only liberated 
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by large events, obliterating evidence of cyclicity (Schmidt, 2009). Therefore, for a signal to 

be detectable, the amplitude must be on the order of, or greater than, the magnitude of the 

largest autogenic event e.g. a landslide. 

As the sediment storage potential within a STS decreases, the potential detectability of 

sediment flux signals increases. Unlike the numerical system, the physical rice pile evolves 

under gravity, removing the requirement for strict sediment transport thresholds. Alongside 

this, some grains propagate through the system with minimal storage, analogous to suspended 

sediment (Bouchaud et al., 1994). Whilst sediment storage and release are still prominent 

within this system, sediment retention times may be reduced as the thresholds for failure are 

less strict. This means that the chance of smaller flux events occurring is much higher and 

hence some severely degraded signals T<Trw can produce a low-level detectable response 

within the output flux (Griffin et al., 2023). The rice pile with moderate sediment storage 

potential could be thought of as analogous to bedload dominant fluvial systems, which 

experience high temporal variability in sediment transport rates (Elgueta-Astaburuaga et al., 

2018; Bakker et al., 2019). Within bedload-dominated fluvial systems, phases of aggradation 

and degradation of the channel bed and bar forms results in punctuated episodes of sediment 

storage and release over a variety of spatiotemporal scales (Hassan et al., 2007; Luzi et al., 

2021). This causes continuous evolution of the fluvial network and hence a highly dynamic 

STS (Hoey & Sutherland, 1991; Wheaton et al., 2013; Bakker et al., 2019), where the scales 

of sediment storage and release vary considerably from minutes to thousands of years 

(Wheaton et al., 2013; Tofelde et al., 2021; Greenberg & Ganti, 2024). Whilst the sediment 

flux at the outlet may relate to the input signal, sediment storage and remobilization dilute the 

imposed sediment flux signal and hence reduce its detectability (Tofelde et al., 2021). 

Therefore, depending on the spatiotemporal dynamics of the system, high-frequency input 

signals can sometimes produce a detectable response at the system outlet. 

Contrastingly, when the capacity for sediment storage is low, sediment flux signals are 

consistently detectable, evidenced by the results of the numerical granular pile. This system 

evolves via continuous sediment transport in the form of small-magnitude avalanches, but 

many grains also propagate through the system with minimal storage analogous to a suspended 

sediment dominant system. The low sediment storage potential within this system could be 

equated to a suspended sediment dominated fluvial system (Vercruysse et al., 2017), which 

generally have more linear particle trajectories compared to bedload dominated systems (Lauer 

& Parker, 2008). The nature of suspended sediment transport is still stochastic (Shojaeezadeh 



 

141 
 

et al., 2018), and hence signals still experience the same amount of degradation. However, the 

reduction in autogenic noise due to the more continuous sediment transport mechanics allows 

severely degraded signals to still be detectable at the system outlet. This highlights the 

importance of understanding the nature of suspended sediment transport within STS, as they 

have greater preservation potential for environmental signals. Anthropogenic impact (i.e. dam 

building and land use variations) causes dramatic alterations in the volume of suspended 

sediment within fluvial systems, which has consequences for both the morphology of STS and 

the preservation of sediment flux signals (Dethier et al., 2022; Gardner et al., 2023). Some 

anthropogenic alterations within fluvial systems (e.g. punctuated sediment storage behind 

dams) may have the effect of completely shredding high frequency sediment flux signals, 

rendering them undetectable at the system outlet. In other scenarios, such as the channelization 

of fluvial systems, signal propagation and hence detectability may be enhanced by 

anthropogenic influence.  

 

 

Figure 5.6: Relating granular avalanching systems to segments of sediment transport systems. 

The mechanisms of sediment transport in each of the granular avalanching systems are analogous to 

sediment transport in a variety of STS. The strong storage and release dynamics within a 1D cellular 

rice pile can be equated to hillslopes where topographic variations store sediment. Schematic adapted 
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from (Rhoads, 2020). The moderate storage and release processes within the physical rice pile can be 

analogous to the high spatiotemporal variability present within the bedload sediment transport in 

fluvial systems. The more continuous sediment transport dynamics in the numerical granular pile can 

equate to suspended sediment transport in fluvial systems, with continuous flow but punctuated storage. 

Schematic adapted from (Teng et al., 2020). 

 

Whilst influx signals into and out of each individual STS is the focus, a STS has multiple linked 

segments where the sediment efflux out of one segment becomes the sediment influx into the 

next (Allen, 2017). Therefore, although the first segment of a STS may have a low autogenic 

noise level and allow signals to be highly detectable, the next may contain a much higher level 

of noise which obliterates evidence of high-frequency signals (Toby et al., 2022). This 

highlights the requirement to understand the specific mechanisms of sediment transport present 

within the STS segment in question, rather than applying the same autogenic thresholds to 

every geomorphic environment. This is especially important when considering the role of Trw. 

Whilst this timescale is always an upper limit to signal degradation, it is only a lower limit to 

signal detection if the magnitude of autogenic noise is sufficiently large. A pathway for future 

work is to understand how signals propagate through consecutive STS segments with different 

magnitudes of autogenic noise. The forcing conditions applied to these systems are strictly 

controlled whereas in natural systems, the input to the next segment is not solely the output of 

the previous (Toby et al., 2022). Additional forcing can be added to STS segments, for 

example, sea-level oscillations at the terrestrial/marine boundary, which may add additional 

noise and/or overprint the sediment flux signal. Future work should aim to understand how the 

superposition of signals influences the detectability of both periodicities involved.  

5.5.4. Defining the magnitude of autogenic noise within sediment transport 

systems 

Quantifying the magnitude of noise present within a specific STS segment of interest is 

necessary to predict the potential for signal propagation and detection. Comparison of time 

series, and the associated analysis of avalanche dynamics is utilised to compare the dynamics 

in this study. However, this may not be possible from field scale systems and hence quantitative 

classifications must be defined to determine and differentiate the magnitude of autogenic noise 

within all geomorphic environments.  
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Firstly, the general class of distributions (i.e. heavy versus thin tail) of autogenic events within 

a STS may provide one method of classifying the degree of noise present (Ganti et al., 2011). 

Systems with large sediment transport fluctuations generate a heavy-tailed distribution, 

whereas a light-tailed distribution is evident from systems with small sediment transport 

fluctuations. Although this hypothesis is based on two systems alone, future work should 

generate probability distribution functions for sediment transport in a variety of geomorphic 

environments, with the aim to determine if the nature of this distribution. However, it has been 

found that the stratigraphic record does not preserve the heavy tails in magnitude of 

depositional events, resulting instead in the preservation of false exponential distributions 

(Ganti et al., 2011). This highlights the importance of understanding the nature and temporal 

structure of autogenic processes within Earth surface processes, which can provide greater 

understanding of how to invert the stratigraphic record to reconstruct paleo-Earth surface 

processes.  

Secondly, although autogenic processes within both granular systems show comparable 

temporal structure with evidence of all three spectral regimes, it is hypothesised that the 

magnitude of autogenic noise within these systems can be differentiated by the spectral growth 

index (e.g. gradient of red noise respectively) within the power spectra (Figure 5C). The 

spectral growth index defines the strength of the correlation within a system. Strong correlation 

is defined by 1/f2 noise (e.g. red noise, α >2), and weak correlation is defined by noise that less 

than 1/f (e.g. pink noise, α <1) (Grumbacher et al., 1993). The spectral growth index varies 

between the power spectra, where the physical rice pile power spectra follow a much higher 

index value than the numerical granular pile (α = 2.2 and α = 0.56 respectively). The strength 

of the correlation present indicates how frequently and erratically a system can be driven away 

from the mean state; the stronger the correlation, the stronger the ability of a system to resist 

erratic behaviour. Erratic behaviour is defined as a rapid, temporary change within the system; 

in granular systems, the mean state of a system is consistently small sediment fluxes, hence 

examples of erratic behaviour within these systems include system-scale avalanche events or 

periods of stasis (no deposition). Therefore, long-term stability intermixed with temporary 

fluctuations manifests as approximately 1/f noise. 

 

Sediment fluxes from the numerical granular pile display weak correlation, with spectral 

growth of α = 0.56, indicating that the system is frequently driven away from the mean state. 

However, although this system experiences frequent erratic behaviour, the recurrence of these 
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rapid, temporary changes means that the variations away from the mean state are small in 

magnitude and short-lived, before the system is changed rapidly but temporarily in the opposite 

direction. For example, if the numerical granular pile experiences stasis (no deposition), it is 

likely that this stasis is short-lived before fluxes restart, and it is likely that a large avalanche 

event will occur in quick succession after the onset of sediment flux. The frequency in changes 

of behaviour within the system could mean that the noise caused by any one shift in behaviour 

may be of small magnitude. This would cause the overall noise levels in the system to be lower 

than a system where the shifts in behaviour are more sustained (e.g., the rice pile). This has 

implications for the degradation of environmental signals, meaning that signals are severely 

degraded in amplitude as they are smeared through space and time by autogenic processes. 

However, the low noise levels within the system may allow the detectability of sediment flux 

signals to be enhanced over all periodicities, as the magnitude of imposed signals will exceed 

the noise produced within the STS.  

 

5.5.5. Evaluating the use of discrete element models to simulate physical granular 

avalanching systems. 

Analysis and comparison of the efflux time series between the numerical granular pile and the 

physical rice pile show relatively poor agreement, even though the microscopic parameters of 

the grains used in the DEM (excluding grain shape) were set to replicate the microparameters 

of the rice used in the physical experiments. The statistics of the avalanche dynamics differ 

significantly between the systems where the DEM is found to strongly replicate the dynamics 

previously found in physical sandpile experiments rather than rice piles (Frette et al., 1996; 

Paguirigan et al., 2015). This was somewhat expected due to the spherical geometry of the 

particles in the system (a current limitation of MFiX) and hence was not a limiting factor to 

this study as it allowed different sediment transport dynamics to be compared. However, this 

is generally not the case when trying to realistically and accurately simulate materials for 

industrial applications i.e. agricultural materials (Zhao et al., 2021), pharmaceuticals (Yeom et 

al., 2019), mining stability (Radhakanta & Debashish, 2010), food processing technology 

(Suehr et al., 2021) and chemical mixing (Blais et al., 2019). This highlights the importance of 

experimental validation when utilising DEM simulations (Zhang & Vu-Quoc, 2000; Grima & 

Wypych, 2011; Coetzee, 2016), however, this is still a relatively uncommon practice (Li et al., 

2005). Without validating the results, it is easy to accept that the dynamics present within a 

DEM will accurately replicate the properties of the physical system (Coetzee & Scheffler, 

2023). However, a DEM with carefully assigned micro properties may not produce the same 
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level of accuracy on a bulk level, or the bulk behaviours may be comparable and the micro 

parameters may not (Quist & Evertsson, 2015; Simons et al., 2015). This emphasizes the 

difficulty in the numerical modelling of complex granular systems and the relative practicality 

and ease of physical experiments.  

When conducting a sensitivity analysis to calibrate the MFiX-DEM to the physical rice pile, 

measures of GT were utilised. As this gives a measure of collisional activity within a system 

(Taylor-Noonan et al., 2021), it has been hinted that this could also provide a strong measure 

of variations in the scale of internal system dynamics (Kasper et al., 2021). However, GT is a 

poor parameter to use when calibrating the bulk behaviour of a granular system. In Figure 5.1, 

it is evident that two MFiX-DEM experiments which produce different avalanche statistics can 

yield a similar mean ensemble GT. Therefore, reliance on this parameter alone without further 

understanding of the system could lead to erroneous model calibration. Whilst this GT value is 

heavily averaged in this study, this is necessary when comparing GT over a large suite of 

sensitivity analysis experiments. This reason makes GT a difficult and inaccurate parameter to 

utilise for DEM calibration. The most common and important macroscopic parameter in 

characterising the behaviour of granular materials is the angle of repose (Zhou et al., 2002; 

Yan et al., 2015; Roessler & Katterfeld, 2019; Müller et al., 2021). MFiX does not record the 

angle of repose directly throughout experimental runs, and measurement of this parameter is 

time-consuming and comes at a high computational cost. This was unfeasible for the long total 

simulation time and short time step utilised in the sensitivity analysis experiments. This issue 

is usually averted as DEMs utilise short simulation times, on the order of seconds to minutes 

(Siegmann et al., 2021), whereas the nature of these experiments required run times on the 

order of hours. Therefore, experiments of this nature are generally impractical to simulate using 

a DEM and physical experiments are favoured. To gain an idea of the angle of repose 

throughout the run, a time series of the number of grains in the experiment was utilised. This 

was useful to gain an understanding of the temporal variation. However, a measure of the static 

angle of repose of the MFiX-DEM when at dynamic equilibrium during each of the sensitivity 

analysis experiments would have provided early insight as to which combination of FC and 

CoR described the bulk properties best. This would also provide insight as to whether utilising 

spherical particles could truly reproduce the dynamics of a rice pile.  

Spherical grains, such as those used in MFiX, are widely used within DEM’s for computational 

simplicity. It has been suggested that an accurate geometrical representation of a granular 

material does not lead to an accurate prediction of bulk behaviour and that often, simple 
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representations of spheres can produce similar results whilst reducing computational time (e.g. 

Chung & Ooi, 2006). Within a granular avalanching pile this is not the case; the micro 

properties of the grains in MFiX (e.g. grain density, grain size, FC and CoR) are equivalent to 

the rice used in the physical experiments, but the spherical geometry naturally leads to a lower 

rolling resistivity and ensemble internal friction angle that cannot be overcome (Ting et al., 

1993). When using DEM’s it is assumed that the shape of the material is the least important 

factor in the model; hence instead of accurately simulating grain shape in DEM’s, studies 

precisely constrain the macro and microscopic properties of the material being simulated. For 

example, it would be assumed that assigning the correct macro and micro properties to 

spherical particles would generate the same granular interlocking potential as elongated rice 

grains and therefore the same magnitude of stick-slip dynamics would be produced. However, 

this is not the case. Whilst the spherical grains in the MFiX-DEM were microscopically 

prescribed to reproduce the dynamics rice, the system cannot ignore the effects of particle 

geometry as commonly thought and hence the stick-slip dynamics produced were akin to that 

of near spherical particles. Recent advances in DEMs have allowed the creation of non-

spherical particles by rigidly connecting multiple spherical grains in different orientations (e.g. 

Favier & Kremmer, 2001; Elskamp et al., 2017). Whilst a better alternative than using 

individual spherical grains, it has been shown that connected particles may capture qualitative 

experimental features of granular materials, but cannot accurately reproduce quantitative 

results (Qu et al., 2022). For the most accurate results, it may be advised that DEM’s are only 

utilised when the geometry of the physical material can be accurately simulated.  

 

To form a stable granular pile from spherical particles which has a realistic profile and a greater 

angle of repose, enhanced rolling resistivity was incorporated into the MFiX-DEM to prevent 

excess particle rolling and rotation (Zhou & Ooi, 2009; Wensrich & Katterfeld, 2012). Whilst 

a simple and effective prevention method that may allow the alignment of bulk measurements, 

the macroscopic shape of a granular pile is the result of various internal mechanisms involving 

many physical factors (Li et al., 2005; Coetzee, 2017). Although estimates of rolling resistance 

should be physically meaningful estimates (Marigo and Stitt, 2015), this parameter is often not 

measured and instead arbitrarily increased to combat the issue of spherical particles (Asaf et 

al., 2007; Coetzee, 2017). Similar issues also occur with other micro parameters such as 

particle stiffness or particle damping (Kačianauskas et al., 2015). Difficulty arises when 

estimating these parameters as in many circumstances, microparameters are determined by trial 

and error rather than accurate measurements (Belheine et al., 2009; Ma et al., 2020), and how 
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these parameter values were obtained is not mentioned. This instigates a vicious cycle; 

scientists search for measured parameter estimates, are unsuccessful in obtaining these, and 

resort to utilising previous inaccurate estimates. The result of this is that the final model is often 

invalid and the physical meaning of these parameters is lost (Marigo & Stitt, 2015). Therefore, 

a more robust set of calibration procedures may be required that are more experimentally and 

numerically efficient (Coetzee, 2016). 

 

Although only a simple time series of efflux from the outlet of the MFiX-DEM was utilised, 

DEM’s can provide more in-depth insights at both a system and a particle level which are 

impossible to gain from physical experiments (Neto and Wriggers, 2022). MFiX has the 

capability to record the trajectories of individual particles through the model. This would allow 

the residence times of grains within the model to be quantified, and also the trajectories of 

signal propagation through a STS at grain level. Information from DEM’s which may be hard 

to get from physical experiments can also be retrieved. For example, a time series of efflux at 

different locations down the system to quantify the trends in signal degradation and detection 

with distance from the inlet. Finally, the use of DEM’s can bridge the gap between the cellular 

automata models of granular piles used previously (e.g. Bak et al., 1987; Hwa & Kardar, 1992; 

Manna, 1999; Jerolmack & Paola, 2010) and physical granular avalanching experiments. 

Whilst DEM’s are not completely free from user defined thresholds and parameters, they can 

produce a realistic experiment using open-source numerical software and without expensive 

laboratory equipment.  

 

5.6. Conclusions 

• A numerical granular pile model built as a discrete element model is utilised to understand 

the nature and timescales of autogenic processes, and the resultant degradation and 

detection of environmental signals, within a STS where the magnitude of autogenic noise 

is low. 

• Whilst the internal dynamics of the numerical granular pile differ considerably in 

comparison to the physical rice pile, power spectra generated from efflux from the 

numerical granular pile shows a clear tripartite spectral structure, where the autogenic 

timescales, Trw and Twb, show identicality with the physical rice pile. 

• Although the magnitude of autogenic noise is considerably less in the numerical granular 

pile, Trw still provides an upper limit to the timescales over which signal degradation is 
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experienced. However, Trw does not provide a lower limit for signal detectability, as the 

low magnitude of autogenic noise means high-frequency signals are detectable over all 

periodicities and amplitudes.  

• Evidence of resonance is present in the numerical sandpile when the periodicity of the input 

signal is equal to Trw. This finding hints that landscapes can respond and amplify the 

preservation and detectability of environmental signals, but also the increased likelihood 

for these signals to be preserved in strata.  

• This will provide a theoretical basis that can be used to understand how signal detectability 

varies between segments of a STS and how the magnitude of autogenic noise within 

suspended sediment dominated geomorphic environments controls signal propagation and 

detection.  
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This chapter explores how the efficiency of sediment transport and the magnitude of autogenic 

noise within a STS influences signal degradation and detectability (Research Question 3). The 

temporal structure of autogenic noise within a numerical granular system is found to also 

contain three spectral regimes and two autogenic timescales (Trw and Twb), however the overall 

levels of noise within the system are much lower (Objective 3.1). This chapter focuses on high 

frequency signals and finds that Trw still denotes a threshold for the occurrence of signal 

degradation. However, this timescale does not provide a lower limit to signal detection, as 

signals over all periodicities and amplitudes are detectable (Objective 3.2). However, stochastic 

resonance behaviour is present when the period of the signal is equal to Trw (Objective 3.3). 

Overall, whilst the DEM is not able to replicate the behaviour of the physical rice pile due to 

limits on the geometry of the grains used, it can provide insight into systems with different 

internal dynamics (Objective 3.4).  
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Supplementary materials for chapter 5 

Figure S5.1: Schematic diagram highlighting the differences in granular mechanics resulting from 

variations in the coefficient of restitution and the friction coefficient.  

Figure S5.2: Distribution of avalanche sizes within the efflux time series from seven experiments 

with increasing periodicity.  

The time series show an exponential distribution, however as the influx rate increases, there is an 

increased probability of a certain sized event occurring, but the distributions converge at the largest 

event. 
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Table S5.1: Supply characteristics for the individual numerical granular pile experiments, both 

constant and cyclic feed rates. 

Experiment Stage Mean feed rate 

(grains s-1) 

Periodicity of 

signal (s) 

Amplitude of signal 

(grains s-1) 

1 Control 10 - - 

2 Cyclic 10 10 10 

3 Cyclic 10 20 10 

4 Cyclic 10 30 10 

5 Cyclic 10 40 10 

6 Cyclic 10 50 10 

7 Cyclic 10 60 10 

8 Cyclic 10 70 10 

9 Cyclic 10 40 9 

10 Cyclic 10 40 5 

11 Cyclic 10 40 2 
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6. Summary, implications and further work 

In this chapter, the results of Chapters 3, 4 and 5 are summarised and discussed in relation to 

the overall thesis aim, and individual research questions outlined in section 1.6. Each one of 

these chapters covers one of the presented research questions and is presented as an individual 

research paper. The implications of the work are then expanded on in broader context and 

suggestions for further research that have developed from the outcomes of this thesis are 

discussed.  

6.1. Summary of results  

Chapter 3 utilises a physical avalanching rice pile to quantify the full temporal structure of 

autogenic processes and define key autogenic timescales present within STS. Whilst numerical 

sand and rice piles are commonly used to answer questions regarding the mechanics of granular 

systems, these questions were yet to be addressed using a physical rice pile. The true spectral 

structure of autogenic processes generated from a time series of sediment flux was ambiguous 

and unquantified. In some experiments, three noise regimes are present (red, white and blue 

noise), where the spectral gradient breaks define the existence of two autogenic timescales (e.g. 

Hwa & Kardar, 1992). However other experiments only delimit two noise regimes (red and 

white noise) and hence one autogenic timescale, Tx, which provides an upper limit to the 

occurrence of signal shredding (e.g. Jerolmack & Paola, 2010). Hence, the aim of these 

experiments was to define the true temporal structure and timescales of autogenic processes 

within STS, and quantify how this structure delimits periods of signal shredding from those 

which are masked by autogenic noise. The temporal structure of autogenic processes is 

characterised using a rice pile experiment run under constant influx, and then a subsequent 

suite of experiments run under different rates of constant input was utilised to understand the 

controls on the autogenic timescales. Cyclic sediment flux signals were then imposed onto the 

rice pile with different combinations of period and amplitude. Signals over all amplitudes with 

periodicity less than the short autogenic timescale (<Trw) show a severe reduction in amplitude 

as a result of signal shredding and are hence rendered undetectable in the output flux. Large 

amplitude signals with periodicity between the autogenic timescales (Trw<T<Twb) are 

detectable within the output flux. However, detectability scales with signal amplitude, where 

low amplitude signals are of the same magnitude as autogenic noise and are hence obscured.  

Signals with periodicity greater than the longest autogenic timescale (>Twb) show enhanced 

detectability as the signal period is greater than the longest timescale autogenic process. This 
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framework will allow us to predict how environmental signals interact with STSs over a range 

of timescales to garner a detectable (or not) response. 

Chapter 4 quantifies the effect of stratigraphic incompleteness on the temporal structure of 

autogenic processes and consequently the detectability and apparent degradation of 

environmental signals. The reconstruction of environmental signals is challenging from a 

temporally complete record due to the effect of autogenic processes (Chapter 3). However, the 

geological record is temporally incomplete due to the existence of time gaps over a variety of 

scales, generated by unsteady geomorphic processes, which further complicates signal 

detection and reconstruction. Whilst stratigraphers have long known that all stratigraphic 

sections are incomplete, the impact of incompleteness on the spectral structure of autogenic 

processes that can be recovered and hence the detectability of environmental signals was yet 

to be established. As the temporal structure of autogenic processes and signal detectability has 

been quantified from a physical rice pile, time is artificially removed from the rice pile time 

series (generated from both constant and cyclic influx) to mimic stratigraphic incompleteness 

and the later assumption of linear sedimentation rate. Incompleteness strongly influences the 

scales and spectral structure of autogenic processes preserved, where the tripartite spectral 

structure can be distorted, making both autogenic timescales challenging to quantify. Due to 

this, signals over all autogenic timescales can be rendered undetectable if completeness is low, 

and environmental perturbations can appear to be degraded in amplitude as a result of 

incompleteness. This provides improved understanding regarding the records in which 

information about paleoenvironmental variability may be best preserved. 

In Chapter 5, the temporal structure of autogenic processes is characterised within a system 

where the sediment transport dynamics are less stochastic and the degradation and detectability 

of environmental signals is quantified as a function of autogenic noise. Every geomorphic 

environment has its own bounds on the magnitude and duration of sediment transport 

fluctuations, defined by the thresholds for sediment transport. The magnitude of sediment 

transport events within a system have been found to provide thresholds for the detectability of 

environmental signals within landscapes and strata (e.g. Jerolmack & Paola, 2010; Toby et al., 

2019). Whilst efforts have been focused on understanding the nature of sediment transport and 

environmental signal propagation within systems with strong storage and release processes 

(e.g. bedload dominant systems), quantifying these thresholds within systems where sediment 

transport is more continuous (e.g. suspended sediment dominant systems) is in its infancy. As 

an analogue for a system with less stochastic dynamics, a numerical sandpile was utilised and 
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the results compared to that of the physical rice pile. The temporal structure of autogenic 

processes and associated timescales is established using a experiment run under constant influx, 

and then cyclic sediment flux signals were imposed onto the numerical granular pile with 

different combinations of periods and amplitude. Signals over all amplitudes with periodicity 

less than the short autogenic timescale (<Trw) show a severe reduction in amplitude as a result 

of signal shredding, where signals of similar periodicity experience the same amount of 

degradation no matter the magnitude of transport system noise. Signals over all periodicity and 

amplitude (even those which experience shredding) are highly detectable in the output flux. 

Evidence of resonance is also present when the periodicity of the input signal is equal to Trw; 

this results in the signal experiencing no degradation, and heightened detectability. This is 

important for predicting how high-frequency signals interact within autogenic noise in different 

geomorphic environments and to understand the consequences of anthropogenic activity, 

which influences the volume of suspended sediment, on the ability of a STS to propagate and 

record sediment flux signals. 

6.2. Discussion of results in relation to the thesis aim 

The overall aim of this thesis is to understand the nature of autogenic processes within STSs 

and how these processes influence the ability of landscapes and strata to record evidence of 

external sediment flux signals. Together, the individual research questions presented in 

Chapters 3, 4 and 5 generate a workflow for understanding the propagation, preservation, 

extraction and interpretation of external sediment supply signals across landscapes and to 

strata. The three main research questions are: 

Research Question 1: What is the spectral structure of autogenic processes in a STS and how 

do autogenic timescales control signal propagation and preservation? (Chapter 1). 

Research Question 2: How does stratigraphic incompleteness influence the preserved 

structure of autogenic processes and influence signal detectability? (Chapter 2). 

Research Question 3: How does the magnitude of autogenic noise within a STS influence the 

degradation and detectability of environmental signals? (Chapter 3). 

The objectives defined to answer the 3 questions have been achieved, and hence the research 

questions have been answered. Therefore, the results of all three papers provide quantitative 

understanding of the mechanisms by which autogenic processes operate within the Earth 

surface active layer (landscapes) and within the Earth’s surface inactive layer (stratigraphy). 
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This theory provides a pathway to understand how the combination of depositional, non-

depositional (stasis) and erosional dynamics operating over different spatiotemporal scales 

governs the preservation and detectability of environmental signals. 

The theoretical advances in Chapter 3 (Research Question 1) were fundamental to the 

subsequent work presented in this thesis (Chapters 4 and 5; Research Questions 2 and 3) as it 

provides the theoretical foundation on which these papers were based. However, collating the 

results of Chapters 3 to 5 provides insight into autogenic processes within different individual 

segments within an entire STS (Figure 6.1), and hence signal propagation potential from upland 

catchments to deep sea basins (overall thesis aim). 

 

Figure 6.1: Conceptual diagram of a sediment transport system (STS), highlighting the major 

impediments to the propagation and storage of environmental signals. 

STSs transport sediment from erosional sources to depositional sinks and are sensitive to environmental 

forcings (climate, tectonic, eustatic or anthropogenic change). Propagation of environmental signals 

across the Earth’s surface and into the stratigraphic record is influenced by two primary impediments 

resulting from autogenic processes: signal shredding and stratigraphic incompleteness. These 
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impediments can affect any section of a STS, but for simplicity, these are separated into the transfer 

zone and the depositional sink. 100kyr climatic variability associated with Milankovitch forcing 

generates sinusoidal variations in sediment flux in upland catchments. Autogenic processes within 

hillslope catchments operate over short timescales (<101
 years; McKean & Roering (2004)), hence the 

signal periodicity exceeds the duration of the longest autogenic process and the signal is preserved and 

highly detectable in the output flux (A). The signal propagates into the mountain front alluvial fan 

system. Autogenic processes on alluvial fans operate on longer timescales (102-104 years; Straub & 

Wang 2013)), but the propagation of an unmodified signal is dependent on the coupling of the fan/fluvial 

systems. When fully coupled, the signal will be detectable at the inlet of the trunk fluvial system (B). The 

compensation timescale (Tc) of large river systems can be on the order of 105 years (Li et al., 2016), 

meaning that autogenic timescales can overlap with many mesotimescale environmental forcings. 

Where signal periodicity is of equal duration to the short autogenic timescale (Trw), stochastic 

resonance may amplify the spectral amplitude of the signal (C). The preservation of sediment flux 

signals in the stratigraphic record is complicated by both the harsher stratigraphic shredding regime 

and incompleteness, reducing both signal detectability and the preservation of Earth surface processes 

(D). 

 

Chapter 3 characterises the spectral structure and timescales of autogenic processes within an 

idealised STS (Research Question 1) and highlights the potential universality of this temporal 

structure within all segments of STSs (Figure 6.1). Chapter 5 advances on this framework to 

show that this spectral structure is present within STSs with different sediment transport 

mechanics and sediment storage potential (Research Question 3). Hence, these two papers 

provide key theory to predict what the characteristic autogenic distribution shape should be for 

a given landscape (overall research question).  The size constrains of the system in question 

place upper bounds on the largest autogenic process (Ganti et al., 2011), where different 

properties of the same event define the two autogenic timescales present (Ganti et al., 2011). 

Whilst all three noise regimes will arise in each STS segment, the absolute duration of these 

regimes will vary due to an array of factors including the length of the STS, sediment storage 

potential and the rate/efficiency of sediment transport (linked to water discharge). Therefore, 

whilst this structure is likely inherent to geomorphic processes, evidence of the full spectral 

structure may be unobtainable from a time series due to incompleteness, insufficient duration 

of the instrumental record or measurement resolution (Chapter 4; Research Question 2). These 

papers highlight the importance of establishing realistic expectations of the structure of 

autogenic variability that can be recorded in landscapes versus the structure that can be 
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extracted from strata and, importantly, scientists can look beyond the traditionally assumed 

Gaussian noise models can be (overall thesis aim).  

The advancements in understanding and characterising autogenic processes made in all three 

papers provide key insight into the ability of landscapes and strata to record evidence of 

external sediment flux signals (overall thesis aim). The autogenic timescales (Trw and Twb) 

provide temporal limits for signal shredding (Trw) and signal detection (Twb). Hence, 

comparison of the signal periodicity to both timescales provides knowledge of signal 

detectability within a given STS (Chapters 3 and 5; Research Questions 1 and 3) or the resultant 

stratigraphy (Chapter 4; Research Question 2). Although this thesis utilises two granular 

systems to understand individual STS segments, links can be made as to how signals would 

propagate from source to sink through multiple segments where the duration and magnitude of 

autogenic processes varies (Figure 6.1).  In a STS, the efflux of one segment becomes the influx 

to the next, hence signal propagation potential depends on both the timescales of autogenic 

processes (Toby et al., 2022) and landscape connectivity (Wohl et al., 2019). In an ideal 

scenario, an environmental signal would propagate unmodified from an erosional catchment to 

a deep-sea basin, and then be preserved in the stratigraphic record. However, this is highly 

unlikely. The nature and timescales of autogenic processes will vary significantly between 

segments, where the autogenic timescales would likely increase with distance down system, as 

the length of the STS segments increases. Hence, a signal that was highly detectable in the 

erosional zone could be rendered undetectable by the time it has reached the marine realm, and 

hence has no chance of stratigraphic preservation even before the effects of incompleteness 

(Figure 6.1). Overall, this thesis establishes a suite of theoretical frameworks that provide 

robust confidence limits for signal detectability within environmental parameters and offers 

novel insight into the ability of various geomorphic environments and strata to record evidence 

of external environmental perturbations (overall thesis aim).    

This thesis has been able to make significant theoretical advances in understanding the nature 

of autogenic processes and the mechanics of sediment transport within STS. For the first time, 

this project utilised a physical avalanching rice pile which contains no strict user-defined 

thresholds (e.g. Hwa & Kardar, 1992; Jerolmack & Paola, 2010). This allowed the full structure 

of these processes to be quantified, and provided insight into how these processes propagate, 

modify and preserve evidence of external sediment flux signals at the terminus of individual 

STS segments (Chapters 3 and 5) and in the strata of depositional sinks (Chapter 4). It has 

therefore contributed to addressing significant data, theory and knowledge gaps outlined in 
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Chapter 1, by providing understanding and insight into the internal mechanics of STS (overall 

thesis aim).  

6.3. Implications and future work 

In depositional landscapes, on which this thesis focuses, the importance of defining the 

spatiotemporal scales of autogenic processes has been increasingly recognised (Murray, 2007; 

Murray et al., 2014; Paola, 2016). To define these, a mechanistic understanding of the 

depositional processes which drive autogenic dynamics has been achieved. However, this is 

yet to be achieved to the same extent within erosional landscapes (Whipple & Tucker, 1999), 

where the mechanisms that cause autogenic dynamics and their interaction with allogenic 

forcing are scarcely characterised (Merritts et al., 1994; Limaye & Lamb, 2014; Grimaud et 

al., 2016; Baynes et al., 2018; Scheingross et al., 2020). Internal feedback between erosional 

processes and landscape components causes fluctuations in erosion rate, topography and 

consequently downstream sediment flux under constant external forcing but these processes 

also remain active as landscapes respond to external environmental perturbations (Malatesta et 

al., 2017). Despite ongoing work examining how erosional landscapes respond to allogenic 

forcing (Wobus et al., 2006; Whittaker & Boulton, 2012) defining quantitative frameworks to 

define the scales of autogenic processes present remains a pressing issue for future work 

(Scheingross et al., 2020). The ubiquity of autogenic processes within landscapes allows it to 

be hypothesised that the temporal structure of autogenic processes in erosional environments 

will display a similar tripartite spectral structure as found in depositional systems due to the 

presence of finite size effects within erosional processes, in the same manner as depositional 

processes (Ganti et al., 2011). However, whilst the short autogenic timescale (Trw) in 

depositional environments is defined by the duration of sediment deposition, within an 

erosional landscape this would most likely equate to the time required for the removal and 

redistribution of sediment from a system (e.g. erosion and evacuation of sediment from 

hillslopes by a fluvial system). Whilst this would still be governed by system length (e.g. the 

length of a hillslope), it is also controlled by the connectivity of STS segments which controls 

the timescales of sediment storage within landscapes (Clapuyt et al., 2019). Similarly, whilst 

the long autogenic timescale (Twb) in depositional environments is defined by topographic 

filling, in erosional landscapes this will most likely equate to the time required for the landscape 

to steepen to a similar elevation profile after a large erosional event. This means that variations 

in the frequency of landslide events and/or uplift rate would potentially cause variations in Twb 

in the same manner as sediment influx rate within depositional environments. The linkage 
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between erosional and depositional landscapes within a STS highlights the requirement to 

understand how the mechanics driving autogenic processes evolve down a STS which will 

enable a quantitative understanding of signal propagation potential from source to sink (Allen, 

2008). 

When quantifying the propagation and preservation of sediment flux signals, simple cyclical 

signals with sine wave structure are generally employed (Overeem et al., 2001; Zabel et al., 

2001; Kirby & Whipple, 2012; D’Arcy et al., 2017; Foreman & Straub, 2017; Toby et al., 

2019; Mancini et al., 2023). This is also the case when studying other signals of environmental 

change, including but not limited to water discharge (Simpson & Castelltort, 2012; Moragoda 

& Cohen, 2020), geochemical variations (Newton & Bottrell, 2007; Berner & Berner, 2012), 

or palynological variations (Jiménez-Moreno et al., 2005; Utescher et al., 2009). However, the 

geometry of the input signal may influence its detectability, due to the variations in the volume 

of sediment supplied over the same periodicity and/or the rate of change in sediment supply 

(Toby et al., 2019). This has been somewhat investigated, but mainly focused on rapid, 

instantaneous variations (e.g. signal spikes; Armitage et al., 2011) rather than differences in 

overall signal structure (e.g. square waves, saw tooth waves or superimposed cyclical signals). 

Whilst this thesis also utilises cyclic signals for simplicity, the influence of short-period square 

wave signals is quantified where the rate of change in supply (e.g. acceleration; Toby et al., 

2019) is found to influence detectability. The exact nature of this acceleration threshold is yet 

to be quantified in the surface or strata, but improving our understanding regarding the nature 

of this threshold could provide another pathway which would allow high frequency, degraded 

signals to be detectable. However, when considering a signal of set periodicity, changing the 

rate of sediment input also causes a variation in the total sediment mass input to the system. 

Whilst square wave signals were detectable in the rice pile in comparison to signals with sine 

wave structure, whether the variation in mass or input rate caused this detectability difference 

has not currently been isolated. Nevertheless, all signals imposed on natural sediment routing 

systems are unlikely to exactly follow these geometries. Although perfect sine wave signals 

are utilised for experimental convenience, signals in nature are more likely to be stepped, e.g. 

tectonic signals (Sharman et al.,, 2019), asymmetrical e.g. relative sea level fluctuations 

(Ritchie et al., 2004), or in the form of a sharp increase/decrease in sediment flux that returns 

to a steady state condition e.g. precipitation (Armitage et al., 2011; Van De Wiel et al., 2011) 

or glacial cycles (Watkins et al., 2018). The common trend with these signals is the sharp 

increase in sediment flux at the onset of environmental change, followed by a decrease either 
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to a new, or mean steady state condition. In these scenarios, the rapid change in sediment flux, 

or the larger sediment mass supplied over the same periodicity, may allow the signal to 

overwhelm the magnitude of the autogenic noise and hence be detectable within landscapes, 

but not necessarily in strata. In contrast, stratigraphic preservation of environmental signals 

generally favours those of longer duration (Foreman & Straub, 2017; Toby et al., 2019; Zhang 

et al., 2020; Trampush & Hajek 2016), and it may be the long, slow decline in sediment flux 

resulting from the same environmental forcing that is preserved in strata. Whilst environmental 

perturbations that are natural in origin (e.g. Milankovitch-forced climatic cycles) tend to 

generate longer, slower responses, the recent increase in anthropogenic forcing mechanisms 

comes with much faster rates of change (Syvitski, 2003; Blum & Roberts, 2009). This is more 

analogous to the square wave sediment flux signals imposed onto the physical rice pile, 

however, the amplitude of anthropogenically generated sediment flux signals will most likely 

be much greater than those imposed in this thesis (East et al., 2022). For example, the 

installation or removal of dams can trigger an instantaneous decline or increase in sediment 

yield down-system (Hu et al., 2009), or variations in sediment load can result from 

urbanization, deforestation and agricultural practices (Syvitski & Kettner, 2011; Hao et al., 

2016; Ibáñez et al., 2019). However, whilst anthropogenic activity can directly influence 

sediment flux, it can also have secondary consequences in the form of inducing faster rates of 

environmental change (Rosa et al., 2015). Hence, the theory presented in this thesis can provide 

insight as to whether sediment flux signals generated by different types of anthropogenic 

perturbations will be detectable within STSs and survive the effects of incompleteness to be 

detectable within strata. 

When generating thresholds for the propagation and detectability of periodic sediment flux 

signals, all other external conditions are held constant to isolate impacts (Simons & Senturk, 

1992). Whilst frameworks have been developed based on sediment supply, the threshold for 

the preservation and detectability of allogenic water discharge signals may differ. Whilst 

granular avalanching systems do not allow water discharge signals to be investigated, the 

thresholds for the preservation of discharge variations should be explored, especially due to the 

effects of the current warming climate (Hao et al., 2016; Hirabayashi et al., 2021). 

Furthermore, whilst the propagation of sediment flux signals is widely studied, sedimentary 

signals in the form of grain size variations must be advanced on. It has been shown that deposit 

texture should vary as a response to allogenic forcing (Fedele & Paola, 2007), however 

assessing this in field scale systems may be complex due to local variability imparted by 
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autogenic processes which causes problems when spatially averaging trends (D’Arcy et al., 

2017). STS can also experience the simultaneous occurrence of other allogenic forcings (e.g. 

base level change), which may influence the thresholds for signal transfer. Whilst research has 

focused on the influence of down-system sediment flux/water discharge signals or up-system 

base level signals the impacts of these have successfully been isolated and an understanding of 

how a sediment routing system responds to the superposition of these signals must be achieved. 

This could be attained using a physical rice pile system which was constructed to include 

accommodation generation (e.g. a subsiding base), or by a more natural experimental system 

such as an experimental delta subjected to simultaneous allogenic forcing. Furthermore, to 

advance on this, the thresholds for preserving superimposed signals must be understood, as 

although signals with one periodicity have been imposed for simplicity, natural allogenic 

variations can contain evidence of more than one periodicity. For a more rounded 

understanding of the propagation of all types of environmental signal, it must be understood 

when, where and how different types of signals influence the autogenic processes within a 

sediment routing system, and how these signals become degraded and/or rendered undetectable 

during propagation downstream. Whilst a time series of sediment flux from the system outlet 

is utilised for ease of measurement from both experimental and field scale systems, extracting 

time series from various locations down a STS would allow us to understand the rate of signal 

degradation/obscuring within an STS, and the potential locations where signal preservation is 

most likely. This would enable both geomorphologists and stratigraphers the opportunity to 

find evidence of environmental signals before concluding the lack of periodicity from a time 

series gained from the system outlet or depositional sink. 

To quantify the detectability of external environmental signals within power spectra, the most 

common method to generate confidence bands, typically for paleo-climatic studies, is the 

application of the AR(1) model (Pemberton & Priestley, 1990; Weedon, 2003). This model is 

applied due to the assumption that the temporal structure of power spectra generated from 

environmental and stratigraphic measurables contains only red and white noise (Husson et al., 

2014; Hajek & Straub, 2017). Although commonly utilised, the AR(1) model has been 

previously quantified as a poor fit to any dataset that does not strictly follow an AR(1) process, 

even if the spectra show the presence of red and white noise (Meyer & Kantz, 2019; Shi et al., 

2022). This is because if the spectral model utilised does not fully represent the spectral 

background structure generated by autogenic variability, the model would generate confidence 

bands where the expected power at low frequencies would be underestimated relative to the 
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true power of the spectra. This could result in false positives and spurious signals (Vaughan et 

al.,  2011; Hajek & Straub, 2017). A likely reason the AR(1) model is a poor fit to power 

spectra generated from autogenic processes, is that the power spectra generated from the 

natural variability present in environmental measurables contain evidence of blue noise over 

long timescales. Whilst evidence of blue noise may be uncommon, due to the lack of long time 

series available or the incompleteness of strata, as sediment transport dynamics do not follow 

an AR(1) process, this model will consistently be a poor fit to power spectra generated from 

surface or stratigraphic measurables. This highlights the implications of not quantifying the 

temporal structure of autogenic processes, which influences the choice data analysis methods 

utilised before inverting power spectra for paleo-surface process interpretations and for signal 

detection. Due to the importance of spectral model fit for accurate signal detection, future work 

should focus on generating a model which can produce a strong statistical fit to power spectra 

of this structure over all autogenic timescales. The theory presented in this thesis will aid 

stratigraphers to look beyond the traditionally assumed Gaussian noise models and establish 

realistic expectations of the structure of autogenic variability produced and also those preserved 

in the stratigraphic record (Grove et al., 2022; Tu et al., 2023).  

An exciting attribute of research surrounding signal propagation and the thresholds for signal 

shredding and detectability is that they can be reasonably estimated using measurable 

parameters in field-scale systems. However, although these thresholds are well-known to field 

scientists, applying existing theories to STSs and the resulting stratigraphy can be difficult. 

Whilst the short autogenic timescale (Trw) will be present in each segment of a STS, this 

timescale will be defined by the precise mechanisms that contribute to the longest-duration 

autogenic event. For example, on hillslopes, this may equate to the largest sediment transport 

event (e.g. a landslide), whereas in a river, this may equate to a channel avulsion timescale 

(Jerolmack & Paola, 2007). Therefore, to truly quantify the nature of autogenic processes 

within a STS and how signals are shredded during propagation, future work should aim to 

define the processes that describe the extent of correlation in different STS segments. From 

this, a database could be constructed in a similar manner to the database of incompleteness 

exponents by Jerolmack & Sadler, (2007), which would provide estimates of these timescales 

for a range of modern STS. Furthermore, whilst this timescale in the rice pile is sediment supply 

independent, in field scale systems this timescale is likely to be influenced by sediment supply 

and potentially other factors including but not limited to grain size, cohesion and water 

discharge. Delimiting the precise controls on this timescale in different STS segments would 
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improve understanding of how these additional factors influence the rate of spectral growth, 

the nature of autogenic processes and hence the degree of shredding experienced by 

environmental signals. This would also allow the nature of the relationship between Trw and 

Twb in a variety of different STSs to be established (Figure 6.1). Both of these timescales 

generate a framework that can be used when potential evidence for environmental signals are 

present in power spectra, or to reconstruct the supply conditions of the signal based on the 

preserved record. This means that the interpretation of environmental signals within a time 

series of stratigraphic measurables can be quantitatively justified and field studies where no 

evidence of expected signals was found can test if this is likely due to the signal 

shredding/obscuring, the degree of autogenic noise within a STS, stratigraphic incompleteness, 

or a combination of these issues.  

Whilst a signal may not be recovered from a time series of surface sediment flux, the imposed 

variation in sediment supply will influence the internal dynamics of autogenic processes and 

the resultant stratigraphy. Whilst this thesis starts to explore the preservation of signals in strata, 

it is acknowledged that this theory does not include signal loss caused by vertical cut and fill 

processes associated with the autogenic reworking of sediment, hence a major challenge 

remaining is to integrate surface and stratigraphic timescales and test these in field scale 

systems. Achieving this will allow scientists the ability to identify specific geomorphic or 

stratigraphic records, the sampling resolution or scale of enquiry required or to establish a null 

hypothesis for the presence of external environmental signals. Whilst the thresholds for the 

transfer and detectability of sediment supply signals to landscapes and strata are not the same, 

understanding the relationship between surface and stratigraphic timescales is important for 

defining autogenic thresholds. For example, whilst in the experimental delta the maximum 

avulsion timescale is of the same order of magnitude as Tc, in field scale systems this need not 

be the case and the maximum avulsion timescale may be much shorter. This influences the 

structure of autogenic processes and the timescales over which signals experience shredding. 

Furthermore, it has been suggested that Teq and Tc are of the same order of magnitude (Straub 

et al., 2020; Toby et al., 2022). This thesis suggests that the longest surface autogenic 

timescale, Twb, should also be of the same order of magnitude and related to these other 

autogenically derived timescales. Whilst connections between these timescales have been 

hypothesised, future work should aim to quantify the nature of the theoretical relationships 

between these timescales in different sediment routing system segments, which would enable 

better predictions on which information can be stored in both landscapes and strata. 
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One of the largest, but most rewarding challenges of this research still remains: the application 

of theoretical knowledge gained through experiments and numerical models to field scale 

systems and outcrops (Paola et al., 2009; Straub et al., 2020). Whilst the spatial resolution of 

datasets has increased significantly through modern geophysical techniques and the use of 

UAV’s, resolution limitations in geochronometers mean that accurately quantifying all missing 

time in stratigraphic sections is next to impossible (Smith et al., 2015). Due to this, our 

understanding of autogenic processes and thresholds for signal propagation is limited to 

experimental predictions. The theory presented in this thesis could be used to outline field 

localities where specific environmental signals may be preserved. This could either be the 

preservation of modern signals within specific landscapes or the preservation of ancient signals 

within stratigraphy. Whilst this theory utilises measurable parameters from field scale systems 

meaning a first workflow can be developed for the application to field scale systems, a large 

amount of work remains to integrate field and experimental data in order for the specific 

controls on autogenic timescales, and hence thresholds for signal propagation, to be denoted 

for different STS segments. Once achieved, this will allow for qualitative reconstructions of 

palaeo-Earth surface processes, and environmental change, to be accurately achieved from the 

stratigraphic record.  

6.4. Concluding remarks 

This thesis aimed to develop a quantitative theoretical basis, established using an understanding 

of autogenic processes, that can be used to assess the potential of geomorphic environments 

and the resulting strata to record external environmental signals of varying sediment flux. To 

achieve this, two 2D granular avalanching experiments were developed to bridge the gap 

between simplified 1D cellular automata models and complex, 3D field scale systems, and 

enabled detailed measurements of sediment flux to be made, providing quantitative insight into 

autogenic processes. As a result, this thesis: (1) contributes a quantitative understanding of the 

temporal structure and key timescales of autogenic processes operating within various sediment 

transport systems, which is used to develop a framework that can predict the degradation and 

detectability of environmental signals within landscapes and strata, (2) quantifies how 

stratigraphic incompleteness and the assumption of linear sedimentation rate can hinder the 

reconstruction of palaeo-surface processes and environmental signals from time series of 

stratigraphic information, and (3) provides insight into how the degradation and detectability o 

environmental signals varies with the magnitude of autogenic noise within a STS. Thus, this 
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thesis contributes to the scientific understanding of autogenic processes and how they govern 

signal propagation across landscapes and preservation in strata. 
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Appendices 

1. Physical rice pile datasets  

This thesis utilises a suite of physical rice pile experiments conducted at Tulane University. A 

description of these experiments is outlined in Chapter 2. A total of 41 physical experiments 

have been used in this thesis. The control experiment refers to the rice pile experiment run 

under a constant input rate of 0.37 g s-1. Eight further rice pile experiments run under constant 

input rate were conducted, where the input rate increased systematically in 0.1 g s-1 intervals 

from 0.02 g s-1 to 1.78 g s-1. Based on this, 32 experiments with cyclic input rate were 

conducted. The periodicities of the imposed cycles varied from 6s to 2000s. The amplitude of 

the imposed cycles all shared a mean feed rate of 0.37 g s-1, but varied as a function of the mean 

feed rate from 25% (0.009 g s-1) to 100% (0.37 g s-1).  

Datasets from the physical rice pile experiments are available online through the Harvard 

Dataverse online repository. Here the reference for these experiments is provided. Metadata of 

these experiments can be accessed on the Harvard Dataverse online repository. 

1.1. Physical rice pile metadata 

Reference:  

Griffin, C., Straub, K.M., 2023, Rice Pile Experiments Conducted at Tulane University in 

2022, https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SO5XJP 

Name:  

Rice Pile Experiments Conducted at Tulane University in 2022 

Link:  

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SO5XJP 

See the dataset on the Harvard Dataverse online repository for metadata. 

1.2.MFiX-DEM sandpile datasets 

A suite of numerical sandpile experiments was conducted using MFiX open-source code. A 

description of these experiments is outlined in Chapter 2. A total of 11 numerical experiments 

have been used in this thesis. The control experiment refers to the sandpile experiment run 

under a constant input rate of 10 grains s-1. Ten further numerical sandpile experiments were 

run with cyclic input rate. Seven experiments varied the periodicity of the imposed cycles from 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SO5XJP
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SO5XJP


 

166 
 

10s to 70s, with a constant amplitude of 10 grains s-1. Three experiments varied the amplitude 

of the imposed cycles from 10 grains s-1 to 2 grains s-1, with a constant periodicity of 40 

seconds. Here I provide metadata for the MFiX-DEM sandpile experiments.  

1.3.MFiX-DEM sandpile metadata 

Name:  

MFiX-DEM numerical sandpile experiments conducted in 2022/2023 

Dates run:  

June 2022 – June 2023 

Primary individual responsible for experiments:  

Chloe Griffin, Jonathan Higham 

Purpose of experiments: 

To understand the temporal spectral structure of autogenic dynamics within the numerical 

sandpile and to define the storage conditions of sediment supply signals within the sandpile. 

Sediment supply cycles in this experiment followed a sine wave pattern with variations in 

periodicity and amplitude.  

General description: 

The granular pile was built using a 3D computational domain replicating the physical 

experiment, with dimensions of 0.3 x 0.3 x 0.02m (Figure 4). The domain geometry is 

discretised by a non-uniform grid of 20, 10 and 5 cells in the X, Y and Z directions respectively. 

The walls of the domain utilise the non-slip boundary condition. Particles enter and leave the 

domain via a defined inlet and outlet region. The point-source inlet is generated as a 0.008 x 

0.006m region, allowing only individual particles to enter the domain, increasing accuracy in 

the input rate. The inlet has a mass flow boundary condition and the outlet has a pressure 

outflow boundary condition which spans the open down-system end of the domain. Spherical 

grains with a diameter and density of 0.003m and 1500kg m-3 respectively are used as the 

granular medium. The particle input parameters utilised in the DEM can be found in Table 2.  

Grains are fed into the system from the inlet at the mass flow rate defined in the GUI. Input 

conditions to the system can be precisely controlled by defining an input rate in kg s-1. 

Control experiment input conditions: 
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Total run time: 30,000 seconds 

Input rate: 10 grains s-1 (0.00018 kg s-1) 

Cyclic experiment input conditions: 

Total run time: 30,000 seconds  

Periodicities: 10s, 20s 30s 40s 50s 60s 70s (amplitude held constant at 10 grains s-1 (0.00018 

kg s-1). 

Amplitudes: 10 grains sec-1 (0.00018 kg s-1), 9 grains sec-1 (0.00016 kg s-1), 5 grains s-1 

(0.00009 kg s-1), 2 grains s-1 (0.00004 kg s-1) (periodicity held constant at 40 seconds).  

Data collection: 

Frequency of data collection: 0.001 seconds  

Data collected: particle ID, X, Y and Z velocity, resultant velocity, X, Y and Z coordinates  
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2. Table of symbols and acronyms  

α Spectral gradient 

a Parameter value accounting for bypass efflux 

AR(1) Autoregressive lag 1  

β 1 

BPL Bending power law model 

C Stratigraphic completeness 

CDM Continuum discrete methods 

CoR Coefficient of restitution 

d Diameter 

DBPL Double bending power law model 

DEM Discrete element model 

f Frequency 

fb Frequency of the spectral rollover 

FC Friciton coefficient 

Fc,a Collisional force 

𝛾 Smallest time step removed 

GT Granular temperature 

GUI Graphical user interface 

Hmax Channel depth 

∝ Short term completeness exponent (Jerolmack & Sadler 2007). 

I Moment of inertia 

Kyr Thousand years 

L System length 

𝜆 Rate parameter 

LSP Lomb-Scargle Periodogram 

m Mass 

M Maximum autogenic sediment release event 

MFiX  Multiphase Flow with Interphase eXchanges 

Mmax Maximum mass effluxed over the longest avalanche event 

MTM Multi-taper method 

N Power law normalization factor 

𝜔𝑎 Angular velocity 

PETM Paleocene-Eocene Thermal Maximum 

Qin Sediment input rate (flux) 

Qs  Sediment input rate (volume) 

qo Sediment input rate (mass) 

r Particle coordinate 

ρ Density 

𝜑 Truncation parameter 

S Power at a given frequency 

Sc Critical threshold slope 

SOC Self-organised criticality 

STS Sediment transport system 

T Periodicity of the input signal 
𝜏 Tail index 

Tc Compensation timescale 

𝑇𝑐𝑝 Torque acting on the centre of mass of the particle 

Teq Equilibrium timescale 

TFM Two fluid model 

tk Duration of depositional events 

tr Duration of stasis events 
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Trw Short autogenic timescale in a physical rice pile 

Twb Long autogenic timescale in a physical rice pile 

Tx Equilibrium timescale in a numerical rice pile 

UAV Unmanned aerial vehicle  

v Diffusivity 

Vx X component of particle velocity 

Vy Y component of particle velocity 

Vz Z component of particle velocity 

W Width 
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