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‘The nature of autogenic processes and the propagation of environmental signals in sediment transport
systems’ — Chloe Griffin

Thesis abstract

The internal (autogenic) dynamics operating ubiquitously within sediment transport systems
mediate the transport of sediment through a system, which controls the morphology of
landscapes and dictates the architecture of the stratigraphic record. Autogenic processes are
characterised by localized episodes of sediment storage and release that occur throughout a
sediment transport system, which generate fluctuations in sediment transport and add noise to
a time series of sediment flux and the resulting strata. This noise can obscure or shred evidence
of sediment flux signal generated by external (allogenic) environmental perturbations. This
complex interaction of allogenic and autogenic processes makes records of environmental
change difficult to interpret. The duration and magnitude of autogenic processes within
sediment transport systems denote thresholds for the propagation of environmental signals
through landscapes and preservation in strata. If the sediment flux signal is of the same duration
and/or magnitude as the autogenic processes within the system, then the signal will be shredded
(e.g. degraded in amplitude), and hence be rendered undetectable in the output flux.
Conversely, when the sediment flux signal is of longer duration and/or magnitude than the
autogenic processes, then it will overwhelm the magnitude of the variability present within the
system and hence produce a detectable, measurable response at the system outlet. However,
the concept of signal preservation has become complex, where a signal is only defined as
preserved when a detectable response is present, meaning that signals which cannot be
differentiated by autogenic noise, or those rendered undetectable by stratigraphic
incompleteness can be misinterpreted. Therefore, the aim of this thesis is to develop a
quantitative understanding of the nature and timescales of autogenic processes, which can be
used to quantify thresholds for signal shredding and detection in both landscapes and strata.
This is achieved using both a physical avalanching rice pile and a numerical granular pile,
which can elucidate the nature of autogenic processes within sediment transport systems and
offer a rich suite of autogenic statistics along a simple 1D transport path, comparable to
sediment transport within field scale systems. The results of this thesis: (1) provide a
quantitative understanding of the nature and timescales of autogenic processes operating within
sediment transport systems, and use this understanding to develop a framework that can predict
the severity of signal shredding and establish robust confidence limits of signal detectability in
landscapes and strata; (2) quantify the effect of stratigraphic incompleteness and the
assumption of linear sedimentation rate on the preserved structure of autogenic processes and
consequently the detectability of environmental signals; and (3) provides insight into how the
magnitude of the stochastic processes operating within sediment transport systems governs the
amount of degradation environmental signals experiences and the thresholds for signal
detectability within different geomorphic environments. The results in this thesis contribute to
a quantitative understanding of the nature of autogenic processes, which is crucial for (1) the
accurate reconstruction and confident justification of past environmental signals (2)
quantifying the reliability of landscapes and strata as archives of future paleoenvironmental
variability and (3) understanding the geomorphic environments and sedimentary records which
best preserve evidence of paleo-surface processes and environmental signals.



1. Introduction

1.1. Motivation

In the last decade, interest in Earth surface dynamics has accelerated as we address questions
regarding the response of landscapes to environmental change (Hessler and Fildani, 2019;
Straub et al., 2020). The physical record of these processes lies in the resultant stratigraphy,
but to fully employ this indispensable record, we must understand the processes that give rise
to clastic strata (Hessler and Fildani, 2019; Straub et al., 2020). The sediment grains that
constitute clastic strata originate from the upland erosional segments of a sediment transport
system (STS) (Schumm, 1971). This sediment can be mobilised by a variety of erosional agents
(e.g. gravity, wind, water, ice, and/or anthropogenic activity) and transported down-system via
a complex channelized region until permanent deposition within a sedimentary basin (Romans
et al., 2016). Here, it undergoes gradual burial, compaction, and lithification over geological

timescales (Lai et al., 2018), preserving a record of Earth surface processes.

Landscapes evolve in response to environmental perturbations over a range of spatio-temporal
scales (Daniels, 2008; Rohais et al., 2012; Romans et al., 2016; Allen, 2017; Blum et al., 2018;
Straub et al., 2020); commonly these are considered a simple function of climatic shifts,
tectonic uplift or eustatic change (Forzoni et al., 2014). However in modern times
anthropogenic modification is becoming an increasingly dominant mechanism of
environmental forcing worldwide (Jones et al., 2013; Lane et al., 2019). These forcing
conditions (Figure 1.1) operate over a range of timescales, from minutes (e.g. storms,
earthquakes, floods or dam removal) to millions of years (e.g. climatic cycles, mountain
building, land use alterations) (Romans et al., 2016). Environmental forcings generate
variations in sediment flux and the grain size distribution exported from upland catchments
(e.g. tectonics, climate and anthropogenic change) and also control the availability of down-
system accommodation for deposition (e.g. eustatic change) (Armitage et al., 2011; Whittaker,
2012; Li et al., 2018; Sharman et al., 2019). The variations produced as a result of
environmental forcing shape the architecture of the stratigraphic record and provide a unique
record of Earth surface processes and environmental change which exceeds the spatiotemporal
scales of other environmental archives (e.g. ice cores or lake varves) (Wilkinson et al., 2009;
Castelltort et al., 2015; Romans et al., 2016; Sharman et al., 2019). Therefore, the geomorphic
expression of landscapes and their resultant stratigraphic products allow scientists the ability

to answer epistemic questions in our understanding of landscape sensitivity to major
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environmental events and decode the temporally variable controls on sediment production
(Whittaker et al., 2010; Mahon et al., 2015; Brooke et al., 2018).

However, direct communication of sediment supply signals from source to sink is improbable.
Even under steady forcing conditions, sediment movement through transport systems is non-
linear, which can cause environmental sediment flux signals to undergo varying degrees of
modification during transport from source to sink (Paola, 2016; Romans et al., 2016; Hajek &
Straub, 2017; Scheingross et al., 2020). The dynamics operating within landscapes temporally
reconfigure STSs (e.g. autogenic processes), which shape the architecture of the stratigraphic
record (Hajek & Straub, 2017; Burgess et al., 2019; Scheingross et al., 2020). A quintessential
example of autogenic processes is the avulsion of channels within a channel-floodplain system
(Figure 1.1.) (Stouthamer & Berendsen, 2007; De Haas et al., 2016; Hajek & Straub, 2017,
Straub et al., 2020). Episodes of sediment storage and release as a result of autogenic processes
have the effect of obscuring, buffering, or completely destroying (‘shredding’) sediment flux
signals as they propagate across the Earth’s surface (Jerolmack & Paola, 2010; Van De Wiel
& Coulthard, 2010; Hajek & Straub, 2017; Toby et al., 2019; Straub et al., 2020). Alongside
this, spatial variations in sedimentation rate and phases of no deposition or erosion can limit
the recording of environmental signals within stratigraphy (Foreman & Straub, 2017;
Trampush & Hajek, 2017; Straub et al., 2020). These processes can render signals undetectable
(Table 1) within a time series of sediment flux at the system outlet, and hence undetectable
within the stratigraphic record, complicating the latter reconstruction of past environmental
signals from the sedimentary record (Allen, 2008; East et al., 2015; Paola, 2016; Hajek &
Straub, 2017; Harries et al., 2019). The emphasis of many studies has been to quantify
thresholds for the preservation of environmental signals in both landscapes and strata (e.g.
Burgess et al., 2019; Foreman & Straub, 2017; Jerolmack & Paola, 2010; Li et al., 2016; Straub
& Esposito, 2013; Straub & Foreman, 2018; Toby et al., 2019, 2022; Wang et al., 2011),
however, to further understand these thresholds, the thresholds for signal modification (e.g.
signal shredding) and signal detectability must be quantified and differentiated to further

enhance understanding of signal propagation and preservation.
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Table 1.1: Key terms with associated definitions

Term

Definition

Autogenic

Natural variability or dynamics which arise solely from the interaction of
internal system components within a sediment transport system. For
example, bed and bar form formation (Hooke, 2007), dune migration
(Ewing et al., 2006), hillslope landslides (Roering et al,. 2021), channel
avulsion (Jerolmack & Mohrig, 2007), deltaic growth (Kim & Jerolmack,
2008).

Environmental
(allogenic)
forcing

Large scale external factors which control the volume of sediment and the
accommodation available on the Earth’s surface. Allogenic forcing
mechanisms include: climatic change, tectonic uplift, eustatic change or

anthropogenic activity.

Environmental

signal

Attributes of landscape structure, sediment transport capacity and the
characteristics of the resultant stratigraphy that can be linked directly to

environmental forcing.

Self-organized

Ordered or patterned autogenic behavior.

Signal
degradation

The smearing of externally-driven signals by sediment transport processes
across a range of spatiotemporal scales, resulting in the amplitude of the
environmental signal at the system output being severely degraded when

compared to the amplitude of the original signal (Griffin et al., 2023).

Signal detection

Signals which produce a measurable response in a power spectrum which
exceeds the respective confidence band.

Signal shredding

The smearing of externally-driven signals by sediment transport
processes across a range of spatiotemporal scales (Jerolmack & Paola,
2010).

Stochastic

Processes which are defined by a random probability distribution.

Stratigraphic

incompleteness

The concept that sedimentary records contain temporal gaps of varying
duration and hence the sediment present imperfectly samples the time
between the start and end of the stratigraphic section. Either not all time
steps are represented by preserved sediment (incomplete) or all time steps

are represented by preserved sediment (complete).
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The work in this thesis quantifies thresholds for the shredding and detectability of sediment
flux signals and develops an understanding of the controls on the detectability of signals within
a landscape using a physical avalanching rice pile. The rest of this chapter provides an overview
of allogenic and autogenic dynamics controlling landscape evolution, our current
understanding of thresholds for signal shredding and signal preservation within landscapes and
strata, and finally the use of granular piles as an analogy for landscapes. Chapter 2 presents the
methods used in this thesis: the suite of physical rice pile experiments and the numerical
granular avalanching system. The physical experiments support the theoretical framework
presented in Chapter 3, where two autogenic timescales, defined by the temporal structure, are
utilised to differentiate timescales of signal shredding from signal detectability. Chapter 4
builds on the theory presented in Chapter 3, and presents a framework for the detectability of
environmental signals within a record that is temporally incomplete (akin to stratigraphic
incompleteness). Chapter 5 utilises a numerical granular pile to explore signal shredding and
detectability thresholds within landscapes where the magnitude of autogenic noise is low.
Chapter 6 discusses the overarching themes of each chapter in relation to the importance of this

work and the implications for signal reconstruction from landscapes and strata.
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Figure 1.1: Conceptual overview of the Earth’s surface (10° km in length and 10 km wide) showing

the interaction of allogenic and autogenic processes over a range of timescales.

Allogenic processes (red; e.g., climate, tectonics, sea level and anthropogenic change) operating over
a range of spatiotemporal scales control sediment availability and accommodation. Autogenic
processes (blue), operating over similar spatiotemporal scales, arise spontaneously in sediment
transport systems. These processes generate periods of sediment storage and release which creates
heterogeneity in the distribution of sediment across a landscape and influences the propagation of
sediment flux signals. Allogenic and autogenic processes operate over similar timescales and hence
simultaneously control the evolution of landscapes and the production of strata. Timescales of
autogenic processes from Glade et al., (2019), Clarke et al., (2010), Straub & Wang, (2013) and Voller
et al., (2019). Figure adapted from Hajek & Straub, (2017) and Romans et al., (2016).

1.2. Allogenic forcing and the generation of sediment supply signals

STSs are sensitive to external (allogenic) variations in environmental conditions over a range
of spatiotemporal scales, from minutes to millions of years (Romans et al., 2016; Allen, 2017;
Straub et al., 2020) (Figure 1.1). Allogenic forcing (namely climatic, tectonic eustatic or
anthropogenic change) can trigger temporary or sustained changes in any physiological,
biological or chemical attribute of the Earth’s surface, which are known as environmental
signals (Straub et al., 2020; Tofelde et al., 2021). Environmental signals can be recorded within
many time-series generated from environmental measurables, including but not limited to,
speleothems (Fairchild et al., 2006), ice cores (Masson-Delmotte et al., 2006), tree rings
(Gagen et al., 2022), ecological populations (Cazelles, 2004), isotope and chemical data (Leng
& Marshall, 2004) and sedimentary parameters (sediment flux, size distribution and
composition; Tofelde et al., 2021). Whilst this thesis focuses on signals in the form of temporal
variations in sediment flux that propagate down-system, upstream propagation of signals (e.g.
oscillations in relative sea level) driven by base level change can also be a major control on
stratigraphic architecture (Romans et al., 2016). However, the study of sediment flux signals
integrates geomorphology, sedimentology and stratigraphy to study the propagation of
environmental signals across different timescales (Jerolmack & Paola, 2010; Simpson &
Castelltort, 2012; Armitage et al., 2013; Ganti et al., 2014; Romans et al., 2016; Blum et al.,
2018; Li et al., 2018; Duller et al., 2019; Caracciolo, 2020; Straub et al., 2020; Tofelde et al.,
2021; Toby et al., 2022).

Throughout geological history, a combination of climate and tectonics has regulated erosion

and delivery of sediment to a STS (Forzoni et al., 2014; Caracciolo, 2020). However, these
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processes operate over a variety of temporal scales. Over mesotimescale (10* to10° years;
Romans et al., 2016), tectonically active areas can experience denudation rates three orders of
magnitude higher than their inactive counterparts (Hovius, 1996; Hecht & Oguchi, 2017),
hence generating low frequency, long period sediment flux signals (Allen & Densmore, 2000).
Over short timescales (10? — 10* years; Romans et al., 2016), increased precipitation as a result
of climatic shifts can generate sharp peaks and troughs in sediment flux which generally leads
to the supply of high frequency (e.g. Milankovitch scale) sediment flux signals to basins (Allen
& Densmore, 2000; Castelltort & Van Den Driessche, 2003). However, direct human
denudation has increased by a factor of 30 since the mid 20" Century (Zalasiewicz et al. 2015;
Cendrero et al. 2022), hence anthropogenically induced sediment flux signals have intensified
(Waters et al., 2016; East et al., 2022) as a result of deforestation (Syvitski & Kettner, 2011),
road constructions (Waters et al., 2016), dam removal (Ritchie et al., 2018), land use change
(Giri et al., 2019) and mining (Wilkinson et al., 2009) to name a few (see review by Syvitski
et al., (2022). Although the movement of sediment during construction activities accounts for
approximately 30% of all humanly transported sediment (Hooke, 2000), agricultural practices
are the most dominant process of global anthropogenic sediment evacuation (Sherriff et al.,
2019). The intensity of modern anthropogenic activities has been found to trigger more drastic
geomorphic change than natural forcing mechanisms (East et al., 2022), due to the onset of
high amplitude, short durations perturbations, hence these have great potential to impact
landscapes and therefore be preserved in the future rock record (Corcoran et al., 2015).

Sediment flux signals of environmental change are suggested to propagate from source to sink,
allowing for the reconstruction of past environmental perturbations and providing insight into
the response of landscapes to future environmental change (Forzoni et al., 2014; D’Arcy et al.,
2017; Harries et al., 2019; Sharman et al., 2019; Straub et al., 2020; Tofelde et al., 2021).
However, the response of a STS to external environmental perturbations is complex (Schumm,
1973), meaning not all sediment flux signals input to the system are faithfully transmitted down
the system. Sediment transport dynamics operating within the Earth’s surface control sediment
transport and generate impediments for signal storage (e.g. buffering, shredding or stratigraphic
incompleteness; (Jerolmack & Paola, 2010; Simpson & Castelltort, 2012; East et al., 2015;
Romans et al., 2016; Toby et al., 2019; Straub et al., 2020; Tofelde et al., 2021), complicating
the reliable reconstruction of environmental signals from the geological record (Figure 1.2).
Therefore, understanding how and when landscape dynamics impede the stratigraphic storage

of environmental signals is of critical importance for: predicting the spatiotemporal scales of
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mass transfer, understanding landscape sensitivity and resilience (Thoms et al., 2018),
predicting the export and burial of terrestrial organic carbon (Kao et al., 2014), interpreting the
stratigraphic record for natural resource exploration and production (Bhattacharya et al., 2016),
and finally understanding the Earth’s response to ongoing and future natural and anthropogenic
change (Densmore et al., 2007; Forzoni et al., 2014; Mahon et al., 2015; D’Arcy et al., 2017;
Sharman et al., 2019).
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Figure 1.2: Source to sink signal propagation.

Simplified source to sink sedimentary system, where a sediment flux (Qs) signal (green) is generated in
an eroding catchment in response to an environmental perturbation (red). The signal is transported
through a landscape in a channelized zone via a series of storage and release events (autogenic
processes; blue) to depositional sink. In the absence of signals coming from the erosion zone, autogenic
processes in the transfer zone add variability, or ‘noise’, in measures of sediment flux. When a sediment
flux signal is transported through a system, autogenic processes modify and attenuate the signal. This
means that the signal measured in the zone of deposition may not resemble the true input signal.
Adapted from Romans et al., (2016).

1.3. Autogenic processes within sediment transport systems

The transportation and distribution of sediment across the Earth’s surface is environment

dependent due to the combined effects of: variations in sediment properties (e.g. grain size,
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shape, density and cohesion), sediment transport processes and the thresholds for sediment
transport (Jerolmack, 2011; Benavides et al., 2022). This means that the power to transport
sediment is unevenly distributed within sedimentary environments, which generates landscape
instability and eventually triggers landscape re-organization (Hajek & Straub, 2017). A
quintessential example of this process is channel avulsion: in fluvial systems, water and
sediment are transported in geographically confined channels, causing in-channel
sedimentation rates to greatly exceed that of the surrounding floodplains. This preferential
aggradation eventually leads to perched channels, which triggers channel avulsion to reinstate
a degree of landscape stability (Ganti et al., 2016; Li et al., 2022; Mohrig et al., 2000). These
morphodynamic processes occur entirely as a consequence of crossing sediment transport
thresholds and trigger internal system re-configuration are referred to as autogenic processes
(Beerbower, 1964; Hajek & Straub, 2017; Swanson et al., 2019; Scheingross et al., 2020).
Examples of autogenic processes abound: on small scales, these processes drive bed and
barform formation and over larger scales control the generation and evolution of channel
networks, delta lobes, shoreline features and alluvial fans (Phillips, 1999; Muto & Steel, 2004;
Chin & Phillips, 2007; Hooke, 2007; Jerolmack, 2009, 2011; Ganti et al., 2013; Murray et al.,
2014; Pelletier et al., 2015; Paola, 2016; Straub et al., 2020; Brooke et al., 2022). The vast
range of scales over which autogenic processes operate generates a vast spectrum of autogenic

frequencies in landscape morphology (Jerolmack & Paola, 2010).

Autogenic processes naturally occur in the absence of any external environmental perturbations
and are ubiquitous across landscapes, hence are imperative in shaping the geometry of
landscapes and the architecture of the resulting stratigraphic record (Paola, 2016; Hajek &
Straub, 2017; Burgess et al., 2019; Scheingross et al., 2020). However, landscape dynamics in
all environments inevitably result from both autogenic and allogenic processes (Hajek &
Straub, 2017; Mouchené et al., 2017). This is because allogenic processes influence water
discharge, sediment composition and topographic gradients which control STS morphology
and dynamics (Edmonds & Slingerland, 2010). The complex interaction of these processes
complicates the preservation of stratigraphic sequences. Whilst autogenic processes operate
independently of allogenic forcing, variations in boundary conditions as a result of allogenic
forcing influence the morphology of STSs and the rate at which morphodynamic processes
occur (e.g. channel migration rate and avulsion frequency) (Chadwick & Lamb, 2021,
Edmonds & Slingerland, 2010; Li et al., 2017; Reitz & Jerolmack, 2012; Straub et al., 2015;

Wickert et al., 2013). For example, increasing the rate of accommodation generation (Wickert
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et al., 2013), the sediment supply rate (Bryant et al., 1995) and/or water discharge (Van Dijk
et al., 2009) increases the rate of autogenic processes within a STS, and hence the rate of
sediment transport. Therefore, understanding the relationship between autogenic and allogenic
processes within STSs is important as the rates and scales of autogenic processes, controlled
by allogenic forcing, determine surface and stratigraphic architecture but also the propagation

and preservation of environmental signals (Straub et al., 2020).

Autogenic processes are commonly associated with the self-organised behaviour of STSs over
sufficiently long timescales (Swanson et al., 2019), where the products of autogenic dynamics
are distributed in statistically spatially ordered patterns (Hajek et al., 2010; Budd et al., 2016)
and create organised depositional architecture (Hoyal and Sheets, 2009). Hence, the self-
organization of a physical system can be viewed as both a statistical and a measurable property
(Phillips, 1999). Self-organization of STS occurs over a sufficiently long timescale (Swanson
et al., 2019), that is scaled to the size of the system and the nature of the interactions between
the individual system components (Hajek & Straub, 2017). Examples of these processes
include the regular spacing of bedforms and point bars in meandering rivers (Hajek & Straub,
2017), the size distribution of sediment storage and release events within a sediment flux time
series, or the organization of surface topography and the resultant stratigraphic products (Paola,
2016). The interaction between flow and sediment as result of autogenic processes generates
episodes of sediment storage (deposition and aggradation) and release (erosion and bypass)
within landscapes over a range of spatiotemporal scales resulting in stochastic sediment
transport through a STS (Jerolmack & Paola, 2010; Jerolmack, 2011; Van De Wiel et al.,
2011). Whilst sediment storage and release is ubiquitous in all sedimentary environments
(Hajek & Straub, 2017), the timescales of sediment storage can vary between systems. For
example, suspended sediment in rivers experiences minimal storage in comparison to bedload
sediment which can experience sediment retention times between minutes to years (Lambert
& Walling, 1988). Furthermore, portions of sediment liberated by landslides on hillslopes can
be rapidly transported downslope and be deposited directly into the fluvial network, whereas
the majority of sediment will remain trapped in the catchment for thousands of years (Cislaghi
& Bischetti, 2019). Stochasticity over a variety of scales generates significant noise in measures
of sediment flux over the full range of autogenic frequencies (Kim & Jerolmack, 2008;
Jerolmack & Paola, 2010; Van De Wiel & Coulthard, 2010; Romans et al., 2016). This noise
has the ability to obscure evidence of allogenic forcing within landscapes and strata, when the

signal is of the same magnitude as autogenic processes (Jerolmack & Paola, 2010; Van De
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Wiel & Coulthard, 2010; Morris et al., 2015). Furthermore, unlike allogenic processes which
can generate distinctive periodicity, autogenic noise is commonly found to encompass random
sediment transport fluctuations (Jerolmack & Paola, 2010; Paola, 2016). These fluctuations are
assumed to be of small magnitude and uncorrelated (Ventra & Nichols, 2014), but several
studies using both experimental and field data have shown that sediment flux variations as a
result of purely autogenic processes can also record evidence of cyclicity (Burgess et al., 2019;
Foreman & Straub, 2017; Hajek et al., 2012; Kim & Jerolmack, 2008; Meyers, 2012; Miall,
2015; Stouthamer & Berendsen, 2007; Van De Wiel & Coulthard, 2010). For example, channel
avulsion within experimental delta systems has been found to produce cyclic sedimentation
packages (e.g. Kim & Jerolmack, 2008), and automatically induced variations in channel and
sheet flow can produce cyclic sedimentation in fault-bounded basins (e.g. Kim & Paola, 2007),
within fluvial deltas (e.g. Van Dijk et al., 2009) and on alluvial fans (e.g. Clarke et al., 2010;
Nicholas & Quine, 2007). This makes isolating the individual impacts of allogenic and
autogenic processes a major challenge without prior knowledge of the styled allogenic forcing
conditions imposed on a STS (Clarke, 2015). To differentiate these processes, it is important
to understand and characterise the nature and timescales of autogenic processes, to correctly
decipher palaeo-environmental variations and palaeo Earth surface processes (Powell et al.,
2012).

A key aim of geomorphologists and stratigraphers is to accurately reconstruct landscape
response to past environmental change. However, inference of environmental signals from a
time series of sediment flux or from the stratigraphic record is complicated without a thorough
understanding of the nature of autogenic processes. To accurately interpret the environmental
record, quantitative frameworks set by autogenic processes must be utilised which can establish
robust confidence limits of environmental signal transfer and detectability within landscapes
and strata. The next section reviews three impediments to signal storage within STSs, and the
current temporal thresholds used to quantify signal propagation and preservation potential in
both landscapes and strata.

1.4. The propagation and preservation of sediment flux signals through channelized

landscapes and to strata

Sections 1.2 and 1.3 discussed how external environmental perturbations generate sediment
flux signals that can propagate through a STS and have the potential to be preserved in

depositional basins. However, complex sediment transport dynamics within the central,
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channelized transport zone of a STS can have fundamental implications for the propagation
and storage of environmental signals. The transfer zone of STSs (Allen, 2017) conveys
sediment from source to sink, and hence plays a key role in the propagation and preservation
of external sediment flux signals. This region is composed of self-formed fluvial systems,
which funnel water and sediment down-system through a network of narrow, channelized
corridors (Figure 1.1, 1.2). The evolution and reconfiguration of fluvial networks within the
transfer zone (as a result of autogenic processes) generates temporally variable patterns of
deposition, stasis and erosion on a variety of scales. This variability can modify or destroy
evidence of external sediment flux signals (Jerolmack & Paola, 2010). Hence, understanding
fluvial processes over a range of spatiotemporal scales is important for predicting the

modification and propagation of sediment flux signals.

Within fluvial systems, sediment storage and release processes operate on a range of
spatiotemporal scales (Paola et al., 2016; Van de Wiel & Coulthard, 2010) (Figure 1.1.). On
bed scale, the migration of in-channel bedforms (i.e., ripples, dunes and bars) can be thought
of as small-scale autogenic morphology (Goldstein et al., 2011; Paola et al., 2016). These
millimetre to meter scale features evolve and migrate rapidly (seconds to minutes), temporarily
storing and releasing sediment along their trajectory (Jerolmack & Mohrig, 2005). The
dimensions and regular spacing of these bedforms within fluvial systems has also been found
to be autogenically controlled (McEIroy & Mohrig 2009; Ganti et al., 2011; Faulkner et al.,
2016). On a channel scale, fluvial systems migrate gradually through time via simultaneous
bank erosion and bar deposition (Lauer & Parker, 2008). This causes local influxes of
floodplain stored sediment into the trunk channel (Darby et al., 2002), reactivating and eroding
regions of the floodplain previously in stasis (Tipper, 2015). The rate of river migration can
range from less than 0.5 metres to more than 50 metres per year (Greenberg & Ganti, 2024),
and hence can cause dramatic evolution of the fluvial system over decades. On a landscape
scale, rivers can be relocated to an entirely different position on the floodplain by channel
avulsion, triggered by landscape instability (Hajek & Straub, 2017). As sediment is confined
to channelized corridors, in channel sedimentation rates exceed those of the surrounding
floodplain. Hence, aggradation in channels allows them to become topographically perched,
leading to avulsion to restabilise the system (Mohrig et al., 2000). The avulsion timescale, T,
can be estimated as the time for the river to aggrade to one channel depth (Jerolmack & Mohrig,
2007). Estimated avulsion timescales for modern rivers can be in the range of 10! (Kosi River,

India) to 10° (Mississippi River) (Slingerland & Smith; 2004). Alongside variations in space
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and time, sediment storage potential within fluvial systems will vary depending on the
efficiency of sediment transport. For example, sediment transported as bedload will experience
much longer storage times than its suspended sediment counterpart, which may experience near
linear sediment transport (Kleinhans & van Rijn, 2002). Furthermore, the competence and
capacity of the river will influence sediment transport thresholds and hence sediment storage
potential (Church, 2002; Curtis et al., 2010). A river with high competence and/or capacity will
convey sediment over a large range of grain sizes more efficiently down system, decreasing

sediment storage potential (Grant, 2012).

As channelized clastic systems are characterised by measurable and predictable
morphodynamic relationships (Colombera et al., 2017; Paola et al., 2006; Rodriguez-lturbe et
al., 1992), fluvial systems have offer quantitative understanding as to the link between
sediment flux signals, Earth surface processes and stratigraphic products. Three primary
impediments to signal storage arise from sediment transport dynamics within channelized
systems and limit the storage and recovery of environmental signals from landscapes and strata.
In this section, each impediment is reviewed and highlight the respective quantitative
thresholds that can predict under what conditions sediment supply signals are transferred to the

stratigraphic record.

1.4.1. Landscape diffusion

Firstly, deterministic models of Earth surface dynamics within STSs predict the diffusion of
environmental signals through space and time (Paola et al., 1992). The diffusion framework
has been applied to a range of STSs, for example, alluvial fans, deltas, coastlines, hillslopes
and fluvial systems (Flemings & Jordan, 1989; Paola, 2000; Straub et al., 2020). This
framework is used to describe the response and evolution of surface topography to a change in
boundary conditions that influence the flux of sediment provided to a basin (Paola et al., 1992),
where landscape equilibrium is achieved when elevation is stable as a function of time. For a
system of defined length, the time required for a landscape to reach a new equilibrium state is
known as the basin response time, or equilibrium timescale, (Paola et al., 1992; Paola, 2000)
which scales as:
LZ

Ty = —
eq v

Where L is system length and v is diffusivity. For natural fluvial systems, estimates of Teq tend
to span 10°-10° years (Paola et al., 1992; Dade & Friend, 1998; Castelltort & Van Den
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Driessche, 2003). The diffusion coefficient, v, captures the specific properties of a STS and
hence requires a unique set of parameters per landscape which carries considerable amounts of
uncertainty (Paola 2000). To reduce the uncertainty and make the equilibrium timescale
measurable from landscape quantities, Métivier & Gaudeme (1999) reformulated this equation

as follows:

LW H 0y

Tea = —.

Where W is the width of the floodplain, Hmax is the elevation difference from the start to the

end of the system and Qs is volumetric sediment discharge.

The equilibrium timescale can be utilised as a temporal threshold for the propagation and
preservation of sediment flux signals within STSs. When the periodicity of an input signal is
less than Teq, the input signal is substantially buffered by a landscape (Métivier, 1999; McNab
et al., 2023), as a complete new topographic equilibrium is unlikely to be attained. Conversely,
when the signal periodicity is greater than Teq, the system will reach equilibrium with forcing
conditions allowing signals to propagate down-system (Duller et al., 2019; McNab et al.,
2023).

Landscape buffering processes reduce the amplitude of the recorded signal relative to the
known input signal and increase the timescale over which system response is observed relative
to the timescale of the actual perturbation. This results in the smoothing out high frequency
signals during propagation (Allen, 2008; Armitage et al., 2013; Covault et al., 2013; East et
al., 2015; Forzoni et al., 2014; McNab et al., 2023; Pizzuto et al., 2017; Romans et al., 2016;
Spohn et al., 2021; Straub et al., 2020). Consequently, this results in either no identifiable
signal at the system outlet or a transformed signal with both a modified period (time lagged)
and amplitude (decreased) (Métivier & Gaudemer, 1999; Hoffmann, 2015). The buffering of
sediment flux signals occurs due to the redistribution of sediment mass over the Earths surface
over a range of spatiotemporal scales which includes the simultaneous, cumulative effects of
intermittent sediment transport and sediment storage within a landscape (Fryirs et al., 2007).
The distribution of sediment storage sites can provide key information regarding the buffering
capacity of a system (Castelltort & Van Den Driessche, 2003; Armitage et al., 2013; Forzoni
etal., 2014). For example intermontane valley fills (e.g. floodplains, alluvial fans and terraces)
have been described as important landforms which decouple hillslopes from fluvial processes

and hence buffer externally derived sediment flux signals within mountain catchments (Bléthe
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& Korup, 2013; Clarke, 2015; Fryirs et al., 2007; Knight & Harrison, 2013; Pizzuto et al.,
2017). The potential for signal buffering increases with system length; the longer the STS, the
longer the time and the more sediment required for equilibrium to be achieved, hence
increasing sediment delivery times. This was quantified by Castelltort & Van Den Driessche
(2003); the attenuation of the amplitude of Milankovitch scale sediment supply signals over all
periodicities (20 kyr, 40 kyr and 100 kyr) means signal transfer is more probable within short

STSs or the proximal region of larger systems.

However, the representation of STSs as diffusive does not allow for the incorporation of
stochastic sediment transport as a result of autogenic processes, as the lateral stochastic system
dynamics present are averaged over space and time (Hajek & Straub, 2017; Métivier, 1999;
Paola, 2016; Phillips & Jerolmack, 2016; Simpson & Castelltort, 2012; Toby et al., 2022). As
autogenic processes have no role in signal propagation and storage within a diffusional
framework, this can lead to a loss of predictive capability when evaluating the limits of
environmental signal propagation across the Earth’s surface, as only long timescale signals can
be assessed in relation to Teq (Toby et al., 2022). However, autogenic processes are inherent to
3D STSs (Toby et al., 2022) and therefore any theoretical framework must incorporate
stochastic dynamics. For example, Van De Wiel & Coulthard (2010) found that the non-
linearity of bedload fluctuations is indicative of self-organised criticality (SOC), meaning that
sediment flux from these systems is unpredictable. Therefore, attributing individual sediment
flux peaks to environmental perturbations is impossible, as these peaks may represent

autogenic signals generated by internal system dynamics.

1.4.2. Signal shredding

Alongside the attenuation of signals with distance from the source, environmental signals can
be smeared through both space and time due to sediment storage and release as a result of
autogenic processes (Jerolmack & Paola, 2010; Van De Wiel & Coulthard, 2010; Romans et
al., 2016; Toby et al., 2019; Straub et al., 2020; Tofelde et al., 2021). Motivated by fluid
velocity fluctuations in turbulent flows, Jerolmack & Paola (2010) advanced on this work to
quantify how stochastic sediment transport as a result of autogenic processes can influence the
propagation and preservation of environmental signals across landscapes. Jerolmack & Paola
(2010) outlined a concept called ‘signal shredding’, defined as: ‘the smearing of an input signal
over a range of space and timescales by stochastic processes such that an input signal is not

detectable at the outlet of a system’. Shredding was hypothesised to occur where the input
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period of the signal is small in comparison to the magnitude of morphodynamic turbulence

within the system.

Jerolmack & Paola (2010) utilised a numerical model of an avalanching rice pile to demonstrate
this theory. Using a suite of numerical models, it was demonstrated that the degree of signal
alteration during propagation is dependent on the maximum spatiotemporal scales of autogenic
processes within a system. Using this theory, they defined a timescale, Tx, which scaled with

the largest autogenic sediment transport fluctuations:

Where L is the length of the system and qo is the rate of sediment input. The conceptual utility
of this timescale is that environmental signals with periodicity greater than Ty pass through a
transport system unmodified and are recorded in the output flux, whereas those with periods
less than Tx are shredded prior to recording. However, a second scenario exists in which
sediment flux signals can survive shredding; when the amplitude of the input signal is greater

than the maximum autogenic sediment release event. This threshold is defined as:
M ~ I2S,

Where Sc is the critical threshold slope, which at field scales approximates the volume of
sediment required to be eroded for channel generation post avulsion (M = LHmax).

The theory of Jerolmack & Paola (2010) provided insight into the ability of autogenic processes
to shred external environmental signals and quantified two thresholds for the preservation of
environmental signals within landscapes defined by the spatiotemporal limits of autogenic
processes (i.e. the duration and magnitude of noise within a STS). Since the development of
this framework, other models and field observations have demonstrated that autogenic
processes can shred environmental signals within landscapes (Lazarus et al., 2019). However,
the framework of Jerolmack & Paola does not extend into signal propagation and preservation
in stratigraphy, as signal loss due to vertical cut and fill processes is not included. The storage
of environmental signals in stratigraphy requires sediment to be buried below the autogenic
reworking depth. This means that an environmental signal may be preserved in reference to the
surface process signal shredder, but may be shredded by reworking of previously deposited

sediments and hence not be recorded in stratigraphy.
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To extend the work of Jerolmack & Paola, (2010), Toby et al., (2019) developed a quantitative
framework that can successfully predict the conditions necessary for the stratigraphic storage
of sediment supply signals. Within landscapes, this was found to be an individual temporal
threshold (Tx). However, Toby et al., (2019) proposed this threshold for stratigraphy was a
time-dependent magnitude threshold. This threshold is set by the maximum scale of autogenic
processes (sediment storage, bypass and release) over the timescale of interest, defined in this
study by a change in the volume of terrestrial delta deposits as a function of measurement
duration. Using this framework, periodicities of signals that produce stratigraphic signatures
can be differentiated from those that do not induce a stratigraphic response. However, it is also
recognised that short-period input signals can induce a surface response, but are not of
sufficient duration or magnitude to induce a preservable stratigraphic response. Whilst previous
work demonstrates that only the the longest or largest signals should be preserved within
landscapes and strata (Jerolmack & Paola, 2010; Foreman & Straub, 2017; Burgess et al.,
2019), Toby et al., (2019) show the potential for high-frequency input signals to be faithfully
recorded. This framework suggests that commonly discussed sediment supply signals resulting
from Milankovitch scale orbital forcing or punctuated tectonic uplift fall very close to the
proposed threshold. Therefore, it is suggested that extraction of these environmental signals
from a time series of stratigraphic measurables generated from common field exposure and

methods is challenging (Toby et al., 2019).

Whilst the deterministic and stochastic signal propagation frameworks are generally considered
separately, it has been highlighted that parallels exist between the two. Given that both
timescales emerge due to the long-term spatial distribution of sediment deposition, it is
hypothesised that Teq and the compensation timescale (T¢) are equal within a factor of 2 (Straub
et al., 2020; Toby et al., 2022). Therefore, when both these timescales are exceeded, basin-
wide topography and strata are set by allogenic forcing (Straub et al., 2020; Toby et al., 2022).
In terms of signal propagation and preservation, the exchange of sediment over timescales
smaller than Teq must occur through stochastic processes such as channel migration and
avulsion. High-frequency sediment flux signals will be shredded by autogenic processes,
however, signals with periodicity that exceed the thresholds for shredding will be buffered in
a deterministic sense unless the period of the input signal exceeds Teq (Straub et al., 2020; Toby
etal., 2022).
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1.4.3. Stratigraphic incompleteness

Signals with periodicity that exceed the thresholds for signal shredding (e.g. Jerolmack &
Paola, 2010; Toby et al., 2019) are not definitively preserved within stratigraphy due to the
effects of stratigraphic incompleteness. Stratigraphers have long known that all stratigraphic
sections are incomplete (Hutton, 1788; Ager, 1973; Sadler, 1981), as hiatuses permeate
sedimentary records often with unknown duration. These hiatuses occur over a variety of
spatiotemporal scales from laminae to basin scale unconformities, which reduce the
preservation of time within stratigraphic sections (Sadler, 1981; Schumer & Jerolmack, 2009;
Foreman & Straub, 2017; Davies et al., 2019). Stratigraphic incompleteness is not just the
result of erosion, but rather the combined effect of unsteady geomorphic processes causing
variations in the frequency and magnitude of deposition, stasis and erosion due to internal
system dynamics (i.e. autogenic processes) (Hajek & Straub, 2017; Kim & Jerolmack, 2008;
Straub et al., 2020; Straub & Foreman, 2018; Tipper, 2015). Autogenic reorganization of STSs
causes wide areas of landscapes to be in stasis at one time (Ganti et al., 2011; Tipper, 2015;
Hajek & Straub, 2017), which coupled with periods of erosion leaves subtle hiatal surfaces
within strata that in many cases can be difficult to identify (Sadler, 1981; Strauss & Sadler,
1989; Trampush & Hajek, 2017; Boulesteix et al., 2019; Straub et al., 2020). Therefore, the
more intermittent the STS, the greater the opportunity for long-term hiatuses to form
(Jerolmack & Sadler, 2007; Ganti et al., 2020).

Stratigraphic incompleteness has further consequences for the detection of environmental
signals from a time series of stratigraphic measurables (Romans & Graham, 2013), and raises
fundamental questions regarding the reliability of strata as an archive of palaeo-Earth surface
processes (Kemp, 2012; Hilgen et al., 2015; Foreman & Straub, 2017; Trampush & Hajek,
2017; Duller et al., 2019; Straub et al., 2020; Tofelde et al., 2021). The reconstruction of
environmental signals from strata remains challenging even from a temporally complete
stratigraphic record (Jerolmack & Paola, 2010; Toby et al., 2019; Straub et al., 2020), hence
stratigraphic incompleteness can only hinder the reconstruction of environmental signals
further. Stratigraphic dating limits means that sediment age is often assigned by linear
interpolation between dated horizons (Abels et al., 2010; Ramos-Vazquez et al., 2017),
providing additional challenges to the incompleteness problem by distorting the apparent
representation of time in strata, relative to true time (Barefoot et al., 2023). The uneven
representation of time in strata can distort even relatively simple input signals within a time

series rendering them undetectable in the output flux. Trampush & Hajek, (2017) demonstrated
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the significant alteration of a simple geochemical signal associated with the Paleocene-Eocene
Thermal Maximum (PETM) as a result of stratigraphic incompleteness. The apparent period
and amplitude of the PETM event preserved within synthetic sections differed substantially
from the input signal where in the most extreme cases, the record failed to record any evidence

of this extreme climate event.

As the uneven preservation of time can warp the representation of sediment flux signals in
stratigraphy, the scientific community has focused efforts on constraining the timescale of
discretization required to obtain a complete stratigraphic record and the signal duration
necessary for confident signal extraction from proxy records. A first-order control on the
incompleteness of the stratigraphic record relates to the timescales over which the record is
discretized (Sadler, 1981; Sadler & Strauss, 1990). The durations of stratigraphic hiatuses
within both numerical and physical experiments have been found to be heavy-tailed, where the
chance of an exceptionally long hiatus increases with the duration of observation (Schumer &
Jerolmack, 2009; Ganti et al., 2011). This is because, over increasingly long-time windows,
lateral migration of channels allows for sedimentation patterns everywhere in the basin to be
equal. The truncation timescale of this distribution is set by the compensation timescale, T¢; at
this timescale, stratigraphy follows a predictable pattern of compensational stacking. T
represents the maximum timescale of autogenic organization in stratigraphy and denotes the
maximum time window over which channels can rework previously deposited sediments
(Sheets et al., 2002; Ganti et al., 2011; Wang et al., 2011):

Where | is the maximum vertical roughness, often equated to the maximum channel depth,
Hmax, and r is the long-term aggradation rate. Up to Tc, a power law decay in deposition rate
with measurement duration is observed. However, as measurement duration exceeds Te,
deposition rates become stable as the maximum autogenic timescale of the respective basin has
been exceeded (Straub & Foreman, 2018). Therefore, T¢ denotes the minimum discretization

timescale necessary to obtain a complete stratigraphic record (Straub & Foreman, 2018).

Motivated by the finding that stratigraphic incompleteness can warp periodic input signals e.g.
Trampush & Hajek (2017), Foreman & Straub (2017) quantified the minimum periodicity of
an input signal required for confident signal extraction from a proxy record, where they found

that Tc also provides a threshold for faithful signal transfer. External environmental
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perturbations with periodicity less than T¢ cannot be recovered from individual sections without
error and the potential for spurious signals. Once the periodicity of the perturbation exceeds T,
sedimentary layers and associated proxies are available for sampling, however only when the
periodicity is greater than 2T, can the true signal be faithfully and consistently recovered from
strata. This has significant implications for the preservation of high-frequency sediment flux
signals within stratigraphy and demonstrates that only sufficiently long-duration signals should

be preserved within a time series of stratigraphic measurables.

Whilst incompleteness has known consequences for the reconstruction of environmental
signals, the impact of incompleteness on the spectral record of autogenic processes is currently
unknown. This will allow robust confidence limits for signal detectability within environmental

measurables to be established.

1.5. Structure and timescales of morphodynamic stochasticity in sediment transport

systems

The thresholds and frameworks for signal propagation and preservation presented in section
1.3 (e.g. Foreman & Straub, 2017; Jerolmack & Paola, 2010; McNab et al., 2023; Toby et al.,
2019) are defined by the spatiotemporal scales of autogenic processes within the STS in
question. Therefore, the accurate detection of statistically significant cycles from a time series
hinges on our ability to resolve the structure of the natural variance generated by autogenic
processes (Weedon, 2003; Vaughan et al., 2011; Meyers, 2012, 2019; Weedon et al., 2019).
The most commonly used statistical approach for quantifying autogenic variability and
detecting imposed periodicity is the method of power spectral analysis (Butt & Russell, 1999;
Roering et al., 2001; Weedon, 2003; Aziz et al., 2008; Vaughan et al., 2011; Meyers, 2012,
2019; Abels et al., 2013; Foreman & Straub, 2017; Hajek & Straub, 2017; Dunkley Jones et
al., 2018; Toby et al., 2019; Burgess et al., 2019; Lazarus et al., 2019; Smith, 2020). This
technique allows us to quantify the magnitude of autogenic variance as a function of frequency
(‘spectral power”) (Weedon, 2003; Vaughan et al., 2011; Meyers, 2019), where the background
structure of the power spectra provides insight into the style, strength and timescales of
autogenic dynamics in STSs (Jerolmack & Paola, 2007; Hajek & Straub, 2017).

The background structure of power spectra generated from a time series of environmental
measurables is commonly found to be composed of red and white noise (Figure 1X). Red noise
represents a simple stochastic process that is physically motivated by climatic and depositional
system dynamics (Hasselmann, 1976; Sadler & Strauss, 1990; Weedon, 2003; Meyers, 2012).
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In this thesis, red noise refers to the observation that spectral power increases as the frequency
decreases; events are temporally correlated (Grumbacher et al., 1993) and larger-scale
fluctuations have larger characteristic timescales. In terms of sediment flux events, this
highlights the occurrence of individual sediment flux events which gradually increase in mass
and hence duration. White noise represents Earth system components with a slower response
time (Meyers, 2012), and refers to the observation that spectral power is constant with
increasing frequency (Figure 1X); events show no correlation and the time series is stationary
(Grumbacher et al., 1993). In terms of sediment flux events, this spectral regime highlights the
occurrence of sediment flux events of all sizes and duration occurring randomly. Somewhat
less regularly, blue noise is also found within some power spectra generated from
environmental measurables (Fisher et al., 1985; Petchey, 2000; Scheuring & Zeéld, 2001;
Hajek & Straub, 2017). Blue noise occurs beyond the largest spatiotemporal scales of
stochasticity and refers to the observation that spectral power decreases as frequency decreases
(Figure 1X); events are temporally anti-correlated. In terms of sediment flux events, this means
that after the largest event size has occurred, an event of the same duration and magnitude is
improbable. Whilst the background structure of autogenic processes in different sediment
transport routing segments may show similarity, the sediment transport processes that define

the cause and extent of temporal correlation may vary.
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Figure 1.3: Hlustration of the structure of noise within power spectra.

(A) Simplified diagrams highlighting the structure of noise found in natural systems. Red noise describes
when spectral power decreases as frequency increases. White noise describes when power plateaus with
frequency. Blue noise describes when power increases as frequency increases. The ‘periodic’ spectrum
corresponds to a single peak at a given frequency. Adapted from Vaughan et al., (2011). (B) Example
sediment flux time series highlighting the portions of the time series which contributes to generating the
noise regimes seen within power spectra. Red noise is generated when sediment flux variations are
consistently low, generating high frequency noise. White noise is generated when sediment flux events
merge together; the onset of one event can trigger another event, increasing the duration and flux out
of the system and causing randomness in event size. Blue noise is generated when a large sediment flux
event occurs and is succeeded by much smaller flux events as the system regrades. This generates power
spectra with a structure composed of red noise over short timescales, white noise over intermediate
timescales and blue noise over long timescales. The breaks in spectral gradient (T1 and T2; vertical
dashed lines) denote autogenic timescales within power spectra. Peaks in the power spectra linked to
periodic signals can be differentiated from background noise by employing confidence levels. The
spectrum shows a peak at 100s. The 90%, 95% and 99% confidence levels are shown (red dashed lines),

and the spectral peak breeches the 99% confidence level.
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The spectral gradient breaks between the various spectral regimes have been found to denote
characteristic autogenic timescales (Figure 1.3) which provide the thresholds for signal
propagation and preservation. Jerolmack & Paola (2007) found the spectral transition from red
noise to white noise occurs at the maximum avulsion timescale (the longest timescale between
avulsion events) within a numerical delta system. Similarly, Jerolmack & Paola (2010) defined
Tx as the spectral transition between red noise and white noise within a numerical rice pile.
Also, Hajek & Straub (2017) found the spectral transition from red noise to blue noise within
an experimental delta to occur at the compensation timescale, Tc. This means that signals with
periodicity that coincide with the timescales over which temporal correlation (red noise) occurs
in a STS are likely to not be preserved in the output flux (e.g. the signals are shredded;
Jerolmack & Paola 2010). Defining the spatiotemporal scales of morphodynamic stochasticity
is critical to applying signal transfer thresholds to field-scale systems. However, at present, the
theory to fully predict what a characteristic distribution shape should be for a given landscape
under different boundary conditions is insufficient. Hence, it is critical to characterise the
timescales and magnitude of autogenic fluctuations in landscapes with differing levels of
stochasticity and understand how this distribution is preserved in strata.

Strictly periodic processes (e.g. those that repeat perfectly over a defined periodicity, e.g.
environmental signals) produce a single narrow peak in a power spectrum (Figure 1X), where
all the power is concentrated at one frequency (Vaughan et al., 2011). Typically, in climate
analysis, these are strongest within the Milankovitch bands. However, power spectra can be
poor estimators of periodic processes when generated from a time series containing a strong
random component, as power spectra generated from purely stochastic processes can contain
narrow peaks that are difficult to distinguish from periodic processes. Therefore, to detect
periodic signals, a frequency-dependent threshold is generated above which a random
fluctuation in the power spectra is unlikely, namely confidence levels (Figure 1X). The
autoregressive lag-1 (AR1) stochastic noise model (Gilman et al., 1963) is the most commonly
applied spectral estimation method applied for evaluating the presence of periodic processes in
power spectra due to its simplicity (Weedon, 2003; Meyers, 2019). However, if the power
spectra produced from real data do not share the same structure as an AR1 process, then
recovery of environmental signals is fraught with error and spurious signals (peaks that breech
the confidence level but arise due to stochastic variability rather than periodic processes). If
confidence levels are to be meaningful, they must accurately reflect the background structure

of the power spectra and should not artificially favour any region of the spectrum (Vaughan et

36



al., 2011; Meyers, 2012). As numerous studies aim to resolve allogenic signals that may have
similar temporal and/or spatial scales to autogenic processes (e.g. Milankovitch scale orbital
forcing; Aziz et al., 2008; Abels et al., 2013; Hilgen et al., 2015), this highlights the
requirement to define the temporal structure of autogenic processes and develop a model with
a strong statistical fit to the spectral geometry, which will allow the accurate detection of

environmental signals over all autogenic timescales.

1.6. Utilising physical and numerical experiments to study autogenic dynamics and
signal propagation.

Theory and thresholds for the propagation and preservation of environmental signals have been
developed using various numerical and physical scale models of STSs. This thesis utilises a
suite of physical rice pile experiments and numerical sandpile experiments to test hypotheses
on the propagation and preservation of periodic sediment supply signals across landscapes. As
the timescales required for the largest components of STSs (e.qg. rivers or delta systems) to self-
organise are beyond the timescales of human observation and modern instrumental records,
field scale systems are generally unsuitable targets to fully characterise the spectral structure
of autogenic processes and the interaction between autogenic and allogenic processes (Paola et
al., 2009). To overcome this, physical and numerical experiments are utilised where boundary
conditions and data collection resolution can be precisely defined.

One such genre of experiment, pertinent to this thesis, is granular avalanching experiments,
encompassing both sand and rice piles. More than three decades ago, Bak et al., (1987)
proposed the theory of SOC as an explanation for the origin of spatiotemporal variance in
natural systems using a numerical granular pile. They further observed how the addition of a
singular grain could cause a multitude of collapse events on the pile whose size could vary
from one cell in the model to the full length of the pile. The magnitude-frequency distribution
of the collapse events on the pile was found to follow an inverse power law. After the largest
collapse event, the system would self-organise to return to this critical threshold. SOC has been
used to define the dynamics in many environmental systems, including but not limited to,
earthquakes (Godano et al., 1993), forest fires (Clar et al., 1996), river meandering (Stglum,
1996), bank failures (Fonstad & Marcus, 2003; Croke et al., 2015), riffle-pool sequences and
other fluvial bedforms (Clifford, 1993), aeolian bedforms (Anderson, 1990) and sediment yield
(De Boer, 2001).
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Motivated by this study, numerical granular avalanching systems have since been utilised to
further understand the fundamental behaviour of sandpiles (Hwa & Kardar, 1992; Christensen
et al., 1996; Frette et al., 1996; Malthe-Sgrenssen et al., 1999; Manna, 1999). Hwa & Kardar
(1992) advanced on the work of Bak et al., (1987) to quantify the underlying sediment transport
mechanisms responsible for producing SOC in sandpiles. Power spectra generated from a time
series of sediment flux from a numerical sandpile exhibit three spectral regimes, where each
regime denotes different sediment transport mechanics. Firstly, the correlated region over short
timescales denotes isolated avalanche events with an upper cut-off time equal to the maximum
duration of one avalanche. Secondly, over intermediate timescales, an uncorrelated regime
persists, which occurs due to the interaction (merging) of avalanches. Thirdly, over the longest
timescales an anti-correlated regime persists where the sandpile encounters avalanches on the
order of system size. The existence of these system scale events is a unique feature of systems
with threshold instabilities (Hwa & Kardar 1992). Jerolmack & Paola (2010) advanced on the
theory presented by Hwa & Kardar (1992) with an application to understanding signal
propagation through STSs, from which they devised their signal shredding framework

(mentioned in section 1.3.2).

Rice piles are able to elucidate the nature of autogenic processes and offer a rich suite of
autogenic statistics that arise from sediment storage and release along a 1D transport path,
analogous to sediment transport along a 2D transport path in field scale systems. Hence these
systems provide a basis from which STSs and strata can be understood. However, previous
theory has been developed solely from numerical granular systems, which evolve in relation to
user-defined thresholds which control the propagation of particles through the system rather
than natural physical thresholds. Furthermore, numerical granular systems have strict sediment
transport thresholds, where grains cannot leave the system without experiencing at least
temporary storage. In physical systems, grains have the capacity to propagate down-system
with minimal storage, allowing the full range of sediment transport mechanics to occur (Benda
& Dunne, 1997; Ganti et al., 2013). These theories are yet to be tested on a physical rice pile,

which does not suffer from these limitations.
1.7. Research questions

The aim of this thesis is to understand the nature of autogenic processes within STSs and
quantify how these processes influence the ability of landscapes and stratigraphy to record

evidence of external sediment flux signals. Physical and numerical granular avalanching

38



experiments were used to address this aim by using time series analysis techniques to

investigate the following research questions:

Research Question 1: What is the spectral structure of autogenic processes in a STS and how

do autogenic timescales control signal propagation and preservation?

Autogenic processes operating within all STS control the transport of sediment from source to
sink, hence to understand signal preservation potential, the nature of autogenic processes must
first be quantified. The duration and magnitude of stochastic Earth surface processes, relative
to environmental signals, impacts our ability to separate signal from noise in landscapes and
strata. Therefore, quantifying the spatiotemporal limits of autogenic processes can provide
insight into the thresholds for signals in geomorphic environments and strata. Research

question 1 is addressed by the following objectives:

Obijective 1.1: To characterise the full temporal structure and the timescales of

autogenic processes within a physical rice pile.

Obijective 1.2: To delimit the scaling controls on the temporal structure and autogenic

timescales.

Obijective 1.3: To define thresholds for the degradation and detectability of external

environmental signals over the full range of autogenic timescales.

Research Question 2: How does stratigraphic incompleteness influence the preserved

structure of autogenic processes and influence signal detectability?

Records of stratigraphic measurables measured in the field from which power spectra are
generated are temporally incomplete over a range of scales, due to both stasis and erosion as a
result of autogenic processes removing time from stratigraphic sections. Quantifying the
impact of incompleteness on the preservation of paleo Earth surface processes, and hence the
recovery of environmental signals, provides understanding as to which records best preserve
evidence of paleoenvironmental variability. Research question 2 is addressed by the following

objectives:
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Objective 2.1: To investigate how incompleteness over varying scales influences the
preservation of the full temporal structure and timescales of autogenic processes in

stratigraphy.

Objective 2.2: To investigate how sampling resolution and interpolation of an
incomplete time series influences the record of surface processes and autogenic

timescales preserved.

Objective 2.3: To quantify the effect of incompleteness and interpolation on the
detectability of periodic sediment flux signals over the full range of autogenic

timescales.

Research Question 3: How does the magnitude of autogenic noise within a STS influence the

degradation and detectability of environmental signals?

The duration and magnitude of sediment storage and release varies between geomorphic
environments, hence the magnitude of autogenic noise, and the potential for signal detection,
varies spatially within landscapes. Understanding the sensitivity of STSs which promote more
continuous, faster sediment transport to environmental signals can provide insight into which
STS segments may best preserve evidence of high frequency environmental change. Research

question 3 is addressed by the following objectives:

Objective 3.1: To compare the full temporal structure and the timescales of autogenic

processes within a numerical granular pile to that of the physical rice pile.

Obijective 3.2: To explore how signal degradation and detectability is influenced by the

magnitude of autogenic noise.
Obijective 3.3: To investigate the occurrence of resonance within STS.
Objective 3.4: To evaluate the use of DEM’s to simulate physical experiments.

1.8. Thesis structure

This thesis is presented as a series of academic papers. Therefore Chapter 3-5 present methods,
results, contextual literature and discussion which refer to one or more of the research questions
outlined in section 1.7, so there is inevitable repetition of key concepts throughout this thesis.

This thesis includes three manuscripts, but Chapter 3 and Chapter 4 have been published; hence
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these chapters have been modified to keep with the formatting of the rest of the thesis. The
status of each manuscript and author contributions are stated in section 1.9. All references have
been grouped into an ensemble reference list at the end of this thesis. Experimental metadata
are given in Appendix 1; these are available from the Harvard Dataverse online repository

(Griffin & Straub 2023). A list of symbols and acronyms is given in Appendix 2.

Chapter 1 provides an introduction, overview and rationale for this thesis, illustrating the wider
context and a broad overview of the autogenic and allogenic controls on STSs. Most
importantly, this chapter introduced the impediments to environmental signal propagation and
preservation in both landscapes and strata caused by stochastic autogenic processes. The
overall aim of this thesis, and individual research questions are outlined.

Chapter 2 outlines the theoretical background to the experiments and the methodology utilised
in this thesis. The physical rice pile apparatus is outlined, and the calibration experiments and
results are explained. The set-up of the discrete element model (DEM) utilised for the
numerical granular experiments is also outlined. Finally, an overview of the time series analysis

techniques used throughout this thesis are given.

Chapter 3 addresses research question 1. This paper utilises a physical avalanching rice pile to
characterise the temporal structure of autogenic processes within STS and introduces a new
theoretical framework that utilises key autogenic timescales to set temporal limits on the

degradation and detection of sediment flux signals.

Chapter 4 addresses research question 2. This paper utilises the suite of physical rice pile
experiments presented in Chapter 3, from which time is systematically removed to quantify the
implications of incompleteness and imperfect sampling. From this, a theoretical framework is
developed that enables scientists to both predict the detectability of a particular environmental

signal and reconstruct signal properties using an estimate of completeness.

Chapter 5 addresses research question 3. This paper utilises a suite of numerical granular pile
experiments, where the sandpile is generated as a discrete element model and utilises spherical
grains to model systems with a high concentration of suspended sediment. The results of the
numerical system are compared to the physical rice pile to show how the magnitude of storage
and release processes operating within STSs controls the degradation and detectability of

environmental signals.
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Together, Chapter 3 to 5 provide a thorough understanding of the nature of autogenic processes
operating within the Earth’s surface and their controls on the propagation, degradation and

detection of environmental signals thesis.

Chapter 6 concludes the thesis by summarising the results of the individual papers (Chapters 3
to 5), synthesising these in reference to the original aim of this thesis and provides an extended

discussion on the wider implications of the research and avenues for future work.

1.8.1. Publication status of the chapters

Chapter 3: Griffin, C., Duller, R.A., & Straub, K.M (2023). The degradation and detection
of environmental signals in sediment transport systems. Science Advances, v. 9 (44), p. 1-11,
doi/10/1126/sciadv.adi8046

Status: Published in Science Advances

Submitted: 21.08.2023
Published: 04.11.2023
The author contributions to this chapter are as follows:

R.A.D and K.M.S conceived the initial idea of the study

C.G. lead the development of the experimental matrix with input from R.A.D and K.M.S
C.G. and K.M.S. ran the suite of rice pile experiments.

All authors contributed to the data analysis and interpretations

C.G. wrote the manuscript with edits provided by R.A.D and K.M.S

C.G. revised the manuscript after review with edits provided by R.A.S and K.M.S

Chapter 4: Griffin., C., Duller, R.A., & Straub, K.M (2024). The incomplete record of autogenic
processes sets limits on signal detectability. Journal of Geophysical Research: Earth Surface, v 129 (4),
e2023JF007538

Status: Published in JGR: Earth Surface
Submitted: 14.11.2023

Published: 01.04.2024
The author contributions to this chapter are as follows:
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C.G. conceived the initial idea of the study

C.G. lead the development of the experimental matrix with input from R.A.D and K.M.S
C.G. and K.M.S. ran the suite of rice pile experiments.

All authors contributed to the data analysis and interpretations

C.G. wrote the manuscript with edits provided by R.A.D and K.M.S

Chapter 5: Turning the volume down: How does the magnitude of autogenic noise in a

sediment transport system influence the preservation of environmental signals?
Status: In preparation for submission to JGR: Earth Surface
The author contributions to this chapter are as follows:

C.G. conceived the initial idea of the study

C.G. lead the development of the experimental matrix with input from J.E.H, R.A.D and
K.M.S

C.G. and J.E.H ran the suite of MFiX-DEM experiments.

C.G. and K.MS. ran the suite of rice pile experiment

All authors contributed to the data analysis and interpretations

C.G. wrote the manuscript with edits provided by R.A.D and K.M.S

1.8.2. Published datasets
Griffin, C., Straub, K. M., 2023. Physical rice pile experiments, Harvard Dataverse
All data can be accessed at

https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/SO5XJP under
the dataset Rice Pile Experiments conducted at Tulane University in 2022.

Author contributions to the experiments are as follows:

Chloe Griffin and Kyle Straub — conducted experiments
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2. Methods

2.1. Experimental background

To quantify the structure and timescales of autogenic processes and their control on the
propagation of external environmental signals under controlled input conditions, this project
primarily utilises a suite of physical rice pile experiments alongside a numerical granular
avalanching system. Both granular piles offer the opportunity to quantify a rich suite of
autogenic statistics due to sediment storage and release along a 1D path, analogous to sediment
storage and release along a 2D path in field scale routing systems. Using a system with simple
operation procedures, the interaction between autogenic processes and external environmental

signals over measurable timescales can be studied.

The work of Jerolmack & Paola, (2010) forms a basis for the experimental set up and matrix
utilised in chapters 3 to 5. The structure and timescales of autogenic processes within the
numerical avalanching rice pile were quantified using a time series of efflux, and used to
propose a framework for the propagation and storage of environmental signals. From an
experiment run under constant input rate, the structure of autogenic noise exhibits two regimes:
temporal correlation (red noise) over short timescales transitioning to no correlation (white
noise) over all succeeding timescales. The transition between the noise regimes denotes the
saturation timescale Ty, which is noted to scale as L?/qo, where L is system length and qo is
input rate (Jerolmack & Paola, 2010). Tx was defined as an upper temporal limit on the ability
of autogenic processes to “shred” environmental signals, where the conceptual utility of this is
that signals with periods greater than Tx are recorded in the output flux, whereas signals with
periods less than Ty are shredded. However, shredded signals can be detectable in the output if
the signal has sufficient magnitude to overwhelm autogenic processes. This magnitude was
proposed to scale as as M ~ LS., where S is the critical threshold slope, which at field scales
approximates the volume of sediment required to be eroded for channel generation post-
avulsion (Jerolmack & Paola, 2010).

Current work on the nature of stochastic processes relies heavily on numerical models of
avalanching systems (Hwa & Kardar, 1992; Frette et al., 1996; Jerolmack & Paola, 2010),
however these systems rely on user-defined thresholds to control ‘grain’ propagation through
the model domain and do not account for grain bypass. To overcome these limitations, this
thesis utilises a physical rice pile which allows the natural dynamics of the system to be

captured without user defined thresholds, and hence is more comparable to natural
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environmental systems. Using the rice pile, the temporal structure of autogenic processes and
the dynamics operating at different temporal scales control the propagation of environmental
signals can be explored and evaluated. In a similar manner to Jerolmack & Paola (2010), signal
periodicity was scaled relative to the autogenic timescales within the rice pile, and signal

magnitude was scaled as percentages of the mean feed rate.

Chapter 5 utilises a different methodology; a granular pile built as a discrete element model
(DEM). The DEM system is built to the same geometry as the physical rice pile apparatus, and

evolves by natural thresholds defined in the governing equations.

2.2. Physical rice pile experiments

The suite of rice pile experiments used in this thesis was conducted in the Sediment Dynamics
Laboratory at Tulane University. The experimental apparatus is constructed of two vertical,
parallel glass sheets 0.37m long, positioned 0.026m (Figure 2.1). Rice was fed to the pile from
a dry particle feeder (Schenk Accurate) positioned 0.008m from the top surface, allowing a rice
pile to form at a critical angle so that a dynamic topographic equilibrium was achieved. Rice
input to the system was controlled at 1 second intervals via a computer connected to the
sediment feeder which directly feeds the pile. Over the suite of experiments, influx was defined
between the minimum and maximum range available on the sediment feeder (0 g s* and 0.78
g s1). Efflux was measured using an Ohaus EX12002 balance (accuracy and precision of 0.1
grams) and recorded at approximately 1 s intervals. The balance has a maximum mass of 12
kg, and all experiments were run until the balance was saturated. The dimensions of rice grains
used in the experiments have a diameter of 0.0025+0.5 m, length of 0.008+£0.5 m and a mass
of 0.02 g (Table 2.1). The experimental set-up used here is similar to that of the physical rice
pile of Frette et al., (1996).
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Sediment
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Figure 2.1: Schematic diagram of the physical rice pile experiment.

Rice is fed directly from the sediment feeder between two glass sheets, separated to create a channel
in which a rice pile can build. Input rate can be controlled through a computer interface. Efflux
from the pile is measured cumulatively every second. Diagram not to scale.

Table 2.1: Characteristics of the rice used in the experiments

Name Par Excellence ® Premium Brown
Rice
Description Long grain, parboiled
Length 0.008 £ 0.5 mm
Width 2.5+ 0.5mm
Aspect ratio 3.2
Average mass 0.195¢
No. density 0.78 +0.1 g/cm?®
Angle of repose 45-47°

To ensure the efflux data are driven only by the internal autogenic dynamics of the rice pile
and not triggered by external noise, accelerations were analysed within the room when the
sediment feeder was on and off, when sediment feeder was on but with no rice delivery, and
when rice was delivered. Accelerations were measured using the Phyphox application on iPad,
which records X, y and z accelerations at an increment of ~0.05 seconds to two significant digits

of acceleration with Sl units. The raw acceleration data, alongside power spectra of the time
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series, were analysed to confirm external vibrations were not triggering avalanches, or that

external vibrations did not occur at repeating frequencies (Figure 2.2)
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Figure 2.2: Acceleration analysis to ensure the dynamics evident are inherent to the rice pile

Left: Raw acceleration time series for the room only, the room and the sediment feeder with no rice pile
and then over the duration of a full experiment. Right: Power spectra (generated using the Multi-taper
(MTM) method with 2 tapers) of the acceleration time series for all three scenarios. Neither the raw

time series nor power spectra show evidence of external noise occurring at repeating frequencies.

A series of experiments were conducted where rice was fed directly from the sediment feeder
to the scale, to confirm high temporal control over the driving rates and cycles imposed. Power
spectra were generated from the time series, which confirms white noise was present across all

frequencies, except a spike in power if periodicity was imposed (Figure 2.3)
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Figure 2.3: Time series and power spectra from three calibration experiments where rice was fed

directly from the sediment feeder to the scale.

Top: Cyclic experiment (periodicity 6s, amplitude 0.37 g s™), with a signal evident at 6s. Middle: Cyclic
experiment (periodicity 250s, amplitude 0.37 g s™), with a signal evident at 250s. Cyclic experiment
(periodicity 2000s, amplitude 0.37 g s™), with a signal evident at 2000 s.
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2.3. Discrete element modelling

The numerical sandpile experiments were performed using MFiX: Multiphase Flow with
Interphase eXchanges, created by the National Energy Technology Laboratory (NETL). MFiX

(https://mfix.netl.doe.gov) is a general purpose open-source computer code, written in Fortran,
used for modelling the hydrodynamics, heat transfer and chemical reactions in fluid-solids
systems (Xu et al., 2017). MFiX can be used to model both fluids and solids using two-fluid
models (TFM) continuum discrete methods (CDM) or discrete element models (DEM) from a
single source code. The geometry and boundary conditions of the model can be controlled
using the graphic user interface (GUI), allowing precise conditions to be established. The
discrete element method (MFiX-DEM) was employed to generate the quasi-2D granular pile.
The DEM can describe solid flows at a particular level, using a Eulerian reference frame for
the continuum fluid and a Lagrangian discrete framework for the particle phase (Garg, 2013).
DEM simulations can provide noteworthy insights that are unattainable through physical
experimental methods (Marchelli & Di Felice, 2021).

The DEM is a popular numerical technique, originally applied by Cundall, (1971), for
computing the behavior of discrete particles. Individual, or clusters of, computational particles
compose the solid phase of the DEM, where each individual particle trajectory can be tracked.
The DEM resolves particle-particle collisions with small time steps, allowing a high level of
accuracy at a cost of being computationally expensive (Garg et al., 2012; Li et al., 2012; Lu et
al., 2022). The trajectory, linear and angular velocities of each particle are predicted through
its Newtonian linear and rotational motion equations (Gopalakrishnan & Tafti, 2013; Marchelli
& Di Felice, 2021). For simplicity, each particle is assumed to have the same density (p) and
diameter (d). The motion of a particle (a) with mass (m), moment of inertia (1) and coordinate

(r) are described by Newton’s equation for rigid body motion:

d2

d_tg = Eg,a + Fc,a 1)
dwg

1 =¢=T, )

Where w,is the angular velocity of the particle and T, is the torque acting on the centre of
mass of the particle. The terms on the right-hand side of equation 1 account for the gravitational
force and the sum of individual contact forces exerted by every other particle in contact with
particle a (Xu et al., 2017).
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Collisions between individual particles or between the particle and the domain boundary are
calculated using the soft-sphere approach of Cundall & Strack (1979). In the soft-sphere model,
particle slightly overlap during contact (Marchelli & Di Felice 2021). In the MFiX-DEM, a
linear spring dashpot soft sphere model is used to calculate the collisional force Fca. Here, the
total contact force on an individual particle is the sum of the normal and tangential forces with

its directly neighbouring particles (Xu et al., 2017).

Fc,a = z (Fn,ab + Ft,ab
beB

Where b is another particle in the model and B is the set of particles in contact with particle a
(Xu et al., 2017). The full details of the governing equations and a detailed verification study
of the MFiX-DEM was pursued by (Li et al., 2012).

The granular pile was built using a 3D computational domain replicating the physical
experiment, with dimensions of 0.3 x 0.3 x 0.02 m (Figure 2.4). The domain geometry is
discretised by a non-uniform grid of 20, 10 and 5 cells in the X, Y and Z directions respectively.
The walls of the domain utilise the non-slip boundary condition. Particles enter and leave the
domain via a defined inlet and outlet region. The point-source inlet is generated as a 0.008 x
0.006 m region, allowing only individual particles to enter the domain, increasing accuracy in
the input rate. The inlet has a mass flow boundary condition and the outlet has a pressure
outflow boundary condition which spans the open down-system end of the domain. Spherical
grains with a diameter and density of 0.003 m and 1500 kg m™ respectively are used as the
granular medium. The particle input parameters utilised in the DEM can be found in Table 2.2
Grains are fed into the system from the inlet at the mass flow rate defined in the GUI. Input

conditions to the system can be precisely controlled by defining an input rate in kg s.
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Figure 2.4: MFiX-DEM numerical granular pile domain

MFiX-DEM domain built to the same geometry as the physical rice pile. Grains enter the pile
through the inlet region at the up-system end, and can exit through the outlet region. Each of the
11,311 particles in the model can be tracked via a coordinate axis system.

Table 2.2: Particle properties utilised in the MFiX-DEM

Particle Properties
Diameter (m) 0.003
Density (kg m™®) 1250
Friction coefficient 0.7
Normal spring constant (N/m) 100
Spring norm/tan ratio 2[7
Damping norm/tan ratio 0.5
Coefficient of restitution 0.45

To reduce the computational time and to ensure each model run started with a granular pile in
dynamic equilibrium, an initial run was completed to pre-assign the particles. This run was 150
seconds long, with a solid volume fraction of 0.1 and a mass flow rate of 0.01 kg s, inputting
11,311 grains. At the end of the run, the particle coordinates were saved and velocities reset to
0, generating an input file used in all the experiments in chapter 5. Although the particles are
pre-assigned to the model domain, at the start of each run the model takes approximately 2000s
to stabilise. The total model run time was set to 30,000 s, with the first 2000 s discounted.

The DEM evolves under natural thresholds defined in the governing equations, which
redistribute mass down the granular pile in the same manner as the physical rice pile system
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during the experiment. Efflux is not measured directly in the DEM; instead the number of
particles in the model is differenced between each time step, generating an efflux time series
over 28,000s. Throughout the model run, the evolution of the pile was monitored by saving
data files at 0.001 second intervals. The data saved in the output files includes: particle 1D, X,

Y and Z velocity and X, Y and Z coordinates for each particle present.

The main limitation of the MFiX-DEM in regards to this thesis is that it is currently only
capable of utilising spherical particles. Previous work utilising granular systems to understand
self-organised criticality have utilised rice due to the high aspect ratio allowing interlocking
behaviours and high intergranular friction which enables the system to become self-organised
(Amaral & Lauritzen 1996). This interlocking behaviour is not possible with spherical grains,
and previous experiments using rice with lower aspect ratios found the system did not evolve
to a critical state (Frette et al., 1996). Although grain shape cannot be modified currently,
physical parameters in the model can be adjusted to increase the similarity of the behaviours:
the friction coefficient (FC) and the coefficient of restitution (CoR). Each parameter has a range
between 0 and 1, allowing intergranular friction and the nature of the granular interactions to
be controlled. The ideal combination of parameters for this system was found using a sensitivity

analysis: a detailed analysis is presented in Chapter 5.

2.4. Time series analysis

The conventional procedure for detecting evidence of periodic cycles within a time series
generates a power spectrum with confidence levels. This technique allows the magnitude of
autogenic variance to be quantified as a function of frequency (‘spectral power’) (Weedon,
2003; Meyers, 2019; Smith, 2023). The most common spectral estimation technique used to
analyse climatic or depositional time series is the multi-taper method (MTM) of Thomson,
(1982). The MTM generates an average power spectrum for an evenly sampled time series,
where the spectrum does not prescribe an apriori model for the processes generating the time
series. To achieve this, the time series is divided into a series of special data windows (tapers).
These tapers individually suppress different parts of the time series to reduce the smearing of
power across a range of frequencies that occurs when the signal being measured is not periodic
in the sample interval. After each taper is applied, a power spectrum is generated from which
an average spectrum is generated; this smooths out spurious irregularities and reduces the
variance of the spectral estimation (Yiou et al., 1996). The greater the number of tapers applied

the greater the reduction in variance, however, a high number of tapers can make spectral peaks
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appear as flat-topped (quasi-periodic) rather than clear spikes (periodic) (Weedon, 2003). The
MTM method represents a good method for producing spectral estimates with high-frequency
resolution and low bias, which is essential in cases with low signal-to-noise ratios (Mann &
Lees, 1996). As the MTM can only be applied to evenly sampled time series, Chapter 4 applies
the Lomb-Scargle Periodogram (LSP) as the time series utilised is non-linear. The LSP is the
best-known algorithm for detecting and characterising periodicity in unevenly sampled time
series (VanderPlas, 2018).

In the mixed power spectra encountered in stratigraphic analysis (where the spectrum is
generated from both random and periodic components), spectral peaks related to the spectral
background must be differentiated from statistically significant periodicity. Originally,
statistically significant peaks within a power spectrum were picked out by eye however more
recently an estimate of the spectral background structure has been generated from which
associated confidence levels are estimated (Weedon, 2003). A confidence level of 95% implies
that 5% of the data above this level is random variance (Vaughan et al., 2011). Below the
confidence level data is assumed to be stochastic variance, whereas spectral peaks emerging
above the confidence level are considered to be statistically significant periodicity (Weedon,
2003). To make a statistical statement about the presence of imposed periodicity within the
power spectra generated from the physical rice pile experimental confidence bands were
generated from 25 realizations of a rice pile experiment run under a constant input rate.
Numerical confidence bands were generated by constructing a spectral model and suite of
associated confidence bands through adaptation of the bending power law (BPL) model

(McHardy et al., 2004) to account for two spectral gradient breaks.
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3. The degradation and detection of environmental signals in sediment transport
systems

This chapter has been published as: Griffin, C., Duller, R.A., & Straub, K.M (2023). The
degradation and detection of environmental signals in sediment transport systems. Science
Advances, v. 9(44), p.1-11, doi/10/1126/sciadv.adi8046.

Abstract
Autogenic processes contribute noise to sediment transport systems that can degrade or mask

externally-derived environmental signals and hinder our ability to reconstruct past
environmental signals from landscapes and strata. To explore this further efflux is measured
from a physical rice pile to ascertain the temporal structure of autogenic noise, and how this
influences the degradation and detection of environmental signals. Our results reveal a tripartite
temporal spectral structure segmented at two key autogenic timescales. The shorter autogenic
timescale set limits on environmental signal degradation, while the longer autogenic timescale
sets limits on environmental signal detection. This work establishes a framework that can be
used to explore how autogenic processes interact with external environmental signals in field-
scale systems to influence their detectability. We anticipate that the temporal structure and
associated timescales identified will arise from autogenic processes in numerous sediment

transport systems.

3.1. Introduction

Sediment transport systems (STSs) are sensitive to external environmental perturbations; these
can be natural (e.g. related to climatic or tectonic processes) or anthropogenic in origin (Gomez
et al., 2007; Romans et al., 2016; East et al., 2018; Ibafiez et al., 2019; Straub et al., 2020).
STSs respond and adjust to these perturbations in a number of ways and over a range of
temporal and physical scales (Romans et al., 2016; Toby et al., 2019). A fundamental response
of a STS to these perturbations is a variation in the generation of sediment supplied to the STS
and transmitted down-system as an environmental signal (Straub et al., 2020; Tofelde et al.,
2021). These environmental sediment flux signals can generate geomorphic and stratigraphic
signatures that allow for the reconstruction of past environmental perturbations (Castelltort et
al., 2015; Mahon et al., 2015; Harries et al., 2019; Sharman et al., 2019; Straub et al., 2020;
Tofelde et al., 2021) and provide insight into the response of landscapes to future

environmental change (Knight & Harrison, 2013; Duller et al., 2019).
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However environmental sediment flux signals can undergo varying degrees of modification
during their propagation through STSs and to strata (Jerolmack & Paola, 2010). This is
primarily due to episodes of sediment storage and release that occur along the length of STSs
in a stochastic manner and are referred to as autogenic processes (Jerolmack & Paola, 2010;
Romans et al., 2016; Hajek & Straub, 2017; Straub et al., 2020). Even under constant boundary
conditions, autogenic processes induce sediment storage and release over a range of spatio-
temporal scales (Anderson & Konrad, 2019; Armitage et al., 2011; East et al., 2015; Hajek &
Straub, 2017; Jerolmack, 2011; Kim & Jerolmack, 2008; Pelletier et al., 2015; Powell et al.,
2012; Vercruysse et al., 2017), from centimeter-scale bedforms migrating over seconds (Ganti
et al., 2013; Leary & Ganti, 2020; Muto et al., 2007; Paola, 2016; Zlatanovic¢ et al., 2017) to
delta lobes avulsing hundreds of kilometers over millennia (Brooke et al., 2022; Chadwick et
al., 2020; Ganti et al., 2016; Paola, 2016). This stochasticity means that a one-to-one
correlation between a singular or periodic environmental perturbation, and a sedimentary-
proxy record for the associated environmental sediment flux signal, is not guaranteed
(Jerolmack & Paola, 2010; Foreman & Straub, 2017; Hajek & Straub, 2017; Straub et al.,
2020). Autogenic processes are a natural physical phenomenon that are ubiquitous across many
landscapes and occur in the absence of external environmental perturbations (Hajek & Straub,
2017; Swanson et al., 2019; Scheingross et al., 2020). Autogenic processes are commonly
associated with a self-organised behavior of STSs over sufficiently long timescales (Swanson
et al., 2019), where the time required for a STS to self-organise is scaled to the size of the
system in question and the nature of the interactions between internal system components
(Hajek & Straub, 2017). The self-organization of a physical system can be viewed as a
statistical property (Phillips, 1999) and as a measurable property. Examples of the latter include
the regular spacing of point bars in meandering rivers (Hajek & Straub, 2017), the size
distribution of sediment storage and release events from a time series of sediment flux, or the

organization of surface topography and strata (Dodds & Rothman, 2000; Paola, 2016).

We note that many measurable attributes of STSs follow heavy-tailed distributions that are
truncated at the upper end (e.g. the magnitude of erosional and depositional events, (Ganti et
al., 2011). The shape of this distribution is determined by the specific transport mechanisms
and depositional dynamics, and the upper truncation is due to the bounding effect of system
size that sets a physical limit on the spatiotemporal scales of autogenic processes (Ganti et al.,
2011). In the broadest sense, self-organization is an emergent property of a system that can be

used to make predictions about the overall behavior of a system (Hajek & Straub, 2017;
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Phillips, 1999). However, autogenic processes also contribute noise to a STS in the form of
autogenic sediment flux or ‘natural variability in sediment flux’ (Kim & Jerolmack, 2008; Van
Dijk et al., 2009; Jerolmack & Paola, 2010; Van De Wiel & Coulthard, 2010; Ganti et al.,
2014; Castelltort et al., 2015; Paola, 2016; Romans et al., 2016; Hajek & Straub, 2017), which
will also impart variability to strata (Burgess et al., 2019; Burgess, 2006; Foreman & Straub,
2017; Kim & Jerolmack, 2008; Toby et al., 2019; Wang et al., 2021). This noise can severely
limit the identification of an environmental sediment flux signal either by obscuring it, i.e. the
power of autogenic noise is greater than the environmental signal itself (Morris et al., 2015);
or by interacting with it to such an extent that no trace remains of the original signal (Li et al.,
2016; Simpson & Castelltort, 2012; Toby et al., 2019), i.e. the signal is shredded (sensu 34).
These two mechanisms are in operation simultaneously and will act to reduce the detectability
of environmental signals from a time-series of sediment flux. However, the concepts of signal
shredding and detectability have become somewhat intertwined, where all undetectable signals
are considered shredded (Jerolmack & Paola, 2010; Lazarus et al., 2019; Tofelde et al., 2021).
The relationship between these concepts, and a framework to predict when signals are shredded
and/or undetectable, is not yet established.

To do this we use a physical rice pile as a rudimentary and idealised STS. Rice piles have
previously been shown to exhibit a complex behavior (Bak et al., 1987; Frette et al., 1996) and
are drawn upon to understand autogenic processes and environmental signal propagation
through STSs (Jerolmack & Paola, 2010). The aim here is to characterise the full temporal
structure of autogenic noise and associated timescales from a physical model; and to understand
how the periodicity and amplitude of imposed environmental signal interacts with the
autogenic noise. This will provide a robust theoretical framework that can be used as a starting
point to explore the autogenic temporal structure of field-scale STSs and how this information
can be used to generate confidence limits of environmental signal detectability and thresholds
of signal shredding (Hajek & Straub, 2017) in STSs and associated strata. More broadly, this
is crucial to the accurate reconstruction of past environmental signals and to our ability to
predict how environmental signals will interact with STSs over a range of timescales to garner

a detectable (or not) response.

3.2. Theoretical background

The timescale required for the largest landscape components of STS (e.g. rivers or delta

systems) to self-organise is beyond the timescales of human observation and modern
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instrumental records (Paola et al., 2009), and so field scale systems are unsuitable targets to
fully characterise the autogenic structure of STS and the interaction of autogenic processes
with environmental signals. To overcome this, physical experiments and numerical models are
used (Paola et al., 2009). One such numerical experiment, and pertinent here, is a numerical
1D avalanching rice pile, which has offered key insights into the structure of stochastic noise
(Hwa & Kardar, 1992) and the role of autogenic processes in environmental signal shredding
(Jerolmack & Paola, 2010). The 1D numerical rice pile models, although rudimentary,
elucidate the nature of autogenic processes and provide a basis from which natural STSs and
strata can be understood (Foreman & Straub, 2017; Hajek & Straub, 2017; Toby et al., 2019),
especially with regards to environmental signal shredding and detectability (Jerolmack &
Paola, 2010). Although these models capture the nature of stochastic dynamics well, one
drawback is that they rely on user-defined thresholds to control the propagation of individual
particles through the model domain rather than natural physical thresholds (Bak et al., 1987).
Additionally, numerical rice pile models do not allow for transport of grains out of the model
domain without experiencing storage on the surface and contributing to the construction of
topography until a critical angle is exceeded whereby an avalanche occurs. In natural systems,
sediment has the capacity to propagate through a system with minimal storage or deposition
which could enhance propagation and detection (Benda & Dunne, 1997; Ganti et al., 2014). A
key example of this is suspended sediment flux in rivers, which experiences significantly less
storage than its bedload counterpart. Physical 1D rice piles do not suffer from these limitations
and offer a richer suite of autogenic statistics that arises from sediment storage and release
along a 1D transport path, analogous to sediment transport in a 2D path in field scale systems
(Frette et al., 1996; Jerolmack & Paola, 2010).

Jerolmack & Paola (2010) determined the structure and timescales of autogenic noise using a
time series of efflux generated from a numerical avalanching rice pile model, and proposed a
framework for the propagation and storage of environmental signals. In their study, the
structure of autogenic noise was found to exhibit two regimes. The first regime comprises
temporal correlation (red noise) over short timescales, where spectral power increases as a
function of period. The second regime comprises zero correlation (white noise) over all
succeeding timescales, where the spectral power plateaus. The transition between the red noise
and white noise regimes denotes a characteristic timescale Tx, which was hypothesised to scale
as ~L2/qo, where L is system length and qo is input rate. Tx represents the upper temporal limit

on the ability of autogenic processes to “shred” environmental signals (Jerolmack & Paola,
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2010). Environmental signals with periods greater than Ty are recorded in the discrete time
power spectral density of the efflux (hereafter, called power spectra), whereas those with
periods less than Ty are shredded as the periodicity of the input signal is within the scale of
individual sediment transport events in the system, obliterating evidence of the signal
(Jerolmack & Paola, 2010).

Whilst the presence of white noise in STS is expected to persist over all timescales greater
than Tx (Jerolmack & Paola, 2010), the results of other numerical sandpile models find the
presence of blue noise (anticorrelation) over the longest timescales (Hwa & Kardar, 1992;
Kutnjak-Urbanc et al., 1996), where spectral power decreases as a function of period. The
presence of anticorrelation within STS is due to the size constraints of a system which places
an upper limit on the size of the largest sediment transport event (finite size effects). This finite
size effect is reflected by a gradient break in the resulting power spectra at the transition from
white noise to blue noise (Hwa & Kardar, 1992; Korup et al., 2010; Ganti et al., 2011; Straub
& Esposito, 2013; Bracken et al., 2015). Within the correlated regime (red noise), the system
continues to operate in the same way as the previous time step (e.g. stabilization of channel
networks on a delta which allow the system to generate consistently high sediment fluxes).
However anticorrelation relates to a behaviour where the largest events are always followed by
small events as the system regenerates or regrades over these longer timescales (Hajek &
Straub, 2017). Anti-correlation or blue noise is common in power spectra from numerical sand
and rice piles (Hwa & Kardar, 1992; Kutnjak-Urbanc et al., 1996), ecological models (Petchey,
2000), ice-core analysis (Fisher et al., 1985) and population dynamics (Scheuring & Zeéld,
2001), hinting at a universal structure due to the finite-size behavior of stochastic systems over
their longest timescales.

In the same manner as Tx was defined by spectral gradient breaks (Jerolmack & Paola, 2010),
the spectral gradient break from white noise to blue noise denotes the presence of another
autogenic timescale, which was suggested to scale with a system-wide discharge event (~L2)
(Te of Hwa & Kardar, 1992). The numerical rice pile investigations of both Hwa & Kardar
(1992) and Jerolmack & Paola (2010) report a short autogenic timescale (i.e. transition from
red noise to white noise) but a discrepancy exists in the definition and scaling of this
fundamental timescale. Hwa & Kardar (1992) suggest that the transition from red noise to white
noise scales as the maximum duration of avalanches (Hwa & Kardar, 1992), whilst Jerolmack

& Paola (2010) suggest that this timescale represents a wedge-filling timescale on the order of
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L? (Tx, Jerolmack & Paola, 2010). The latter definition overlaps somewhat with the definition

of the longer autogenic timescale by Hwa & Kardar (1992)

The structure of autogenic processes (Hwa & Kardar, 1992) and the original framework for
signal shredding (Jerolmack & Paola, 2010) is yet to be duplicated within a physical rice pile
that evolves under gravity and hence is more comparable to natural STS. The physical rice pile
is analogous to a single sediment routing system (Allen, 2017), and the associated temporal
structure and timescales of autogenic processes incorporates all of the autogenic variability this
single sediment routing system can offer. The analogy of a rice pile as a single sediment routing
system is therefore a simple one, but still offers a crucial insight into the autogenic dynamics
of natural systems and their ability to shred or transmit environmental signals. Here we set out
to clarify the origin and scaling of these autogenic timescales by resolving the temporal
structure of autogenic processes using, for the first time, a 1D physical rice pile. To do this, a
time series of efflux from the rice pile at discrete time intervals is utilised (Figure 3.1). This
efflux time series is generated from stochastic avalanche dynamics within the rice pile and is a
proxy for the autogenic dynamics operating within the Earth’s surface. The characterizing the
structure and timescales of autogenic dynamics within a system run under constant input rate,
and this is used to understand the controls on signal shredding, by imposing signals with

periodicity over the full range of autogenic timescales.
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Figure 3.1: The geometry and nature of rice pile experiments.

(a) Schematic diagram of the experimental rice pile set-up. (b) Spatiotemporal scales of avalanches
within the rice pile; over short timescales (bl), individual grains and small avalanches dominate the
time series whereas over long timescales (b2), avalanches on the order of system size occur. (c) Time
series of efflux from the physical rice pile run under constant influx rate (d) Power spectra generated

from the efflux time series. Autogenic timescales are defined according to spectral gradient breaks.

3.3. Results

3.3.1. The temporal structure of autogenic processes

To understand how autogenic processes control signal propagation, we must first understand
the inherent structure of autogenic processes and quantify the key autogenic timescales intrinsic
to the physical rice pile. To do this, a time series of efflux measured at discrete time intervals
is utilised, generated from multiple realizations of the control experiment (run under a constant
feed rate of 0.37 g s*!; ~18.5 grains s). Constant influx to the physical rice pile generates a
range of avalanche event sizes, from continuous small efflux events (e.g. 0.1 g s*; ~5 grains s~
1) to avalanches that span the entire length of the system (33-43 g s%; ~1650 — 2150 grains s2).
The wide range of avalanche sizes that occur within the pile are generated from the pile
fluctuating around a stationary critical state where localized, individual granular interactions
can induce events of system scale. The probability distribution of these avalanches throughout
the time series is heavy-tailed (Figure 3.2A), meaning that although the time series is
dominated by small events (e.g. Figure 3.11, B1), an avalanche on the order of system size (e.g.
a wedge failure event that returns the system to dynamic equilibrium; Figure 3.1, B2), has a

small chance of occurring (Ganti et al., 2011). The rich stochastic dynamics evident in the
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output from the physical system agree with the structure of the internal dynamics observed in
numerical models (Bak et al., 1987; Frette et al., 1996; Malthe-Sgrenssen et al., 1999;
Jerolmack & Paola, 2010).

The power spectra generated from the efflux time series from the constant influx experiment
exhibit three noise regimes defined by two distinct changes in the gradient of the power spectra
(Figure 3.2B). The first regime comprises red noise (temporal correlation), whereby spectral
power increases as a function of period (with a spectral gradient, a, of 2.2), The upper temporal
limit of red noise denotes a characteristic autogenic timescale, Trw, Which is approximately 30
seconds for this experiment. The second regime comprises white noise, which occurs over 30
to 650 seconds, where spectral power plateaus, indicating events over this timescale are
temporally uncorrelated. The upper temporal limit of white noise denotes a characteristic
autogenic timescale, Twb, which occurs at approximately 650 seconds for this experiment. The
third regime comprises blue noise over timescales greater than 650 seconds, whereby spectral
power decreases as a function of period (with a spectral gradient, a, of -2), exhibiting anti-

correlation in efflux.
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Figure 3.2: Time series analysis of mass efflux from the control experiment, where influx rate is 0.37
gst

(a) Distribution of avalanche sizes throughout the time series, where the probability shows a heavy-
tailed distribution. (b) Power spectra of the time series for one realization of the control experiment,
generated by the multi-taper method, showing tripartite geometry composed of red, white and blue
noise. Spectral gradient breaks between the regimes mark two timescales: Trw and Tw,. This spectrum
is compared to the mean spectra from all 25 realizations of the control experiment, with the 95%

confidence band generated from the realizations displayed.
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These three noise regimes exist within the power spectra regardless of the absolute influx rate,
Qin (Figure 3.3A). However, we explore the controls on the absolute spectral duration of each
regime and both autogenic timescales, Trw and Tws, Using a suite of experiments run under a
range of constant influx rates (Table S3.1). Firstly, we find that the red noise regime and the
value of Try is insensitive to the influx rate and remain at a constant value of 30 seconds. In
numerical sandpiles, this spectral regime was found to record the duration of individual
avalanche events, where the duration of individual avalanches is directly proportional to
avalanche size (e.g. mass effluxed). These individual events increase in duration until an upper
cut off time is reached (Hwa & Kardar, 1992) which defines the maximum duration of an
avalanche within the system and corresponds to the largest avalanche in terms of total mass
liberated. Through examination of the efflux time series (Figure S3.1), this is also the case for
the physical rice pile. The constancy of the value of T reflects the fixed dimensions of the
system and material properties of the rice material, which fixes the critical angle of repose and
therefore sets the duration of the longest avalanche regardless of the influx rate. Trw will vary
between systems of different lengths (Hwa & Kardar, 1992). Over timescales greater than that
of individual avalanche events (e.g. the white noise regime), avalanche of all sizes and duration
coalesce, increasing the duration over which efflux occurs (Hwa & Kardar, 1992; Kutnjak-
Urbanc et al., 1996). In other words, the onset of one avalanche can instigate another avalanche,
and so the efflux measured is the result of merged events. Ty on the other hand, which sets the
upper limit to the white noise regime, is influx rate dependent (Figure 3.3B). In numerical
sandpiles, this longer timescale was suggested to scale with L2 and influx rate, however the
precise dependence was not determined (Hwa & Kardar, 1992; Kutnjak-Urbanc et al., 1996).
Twb represents the time required for the influx to regrade the mass lost in the largest avalanche
event (a regeneration timescale). The value of Tw, can be predicted by Twb =a.(Mmax/Qin), where
Mmax is the maximum mass efflux over the longest avalanche event (defined by Trw) and a is a
parameter value that accounts for a bypass fraction of the efflux as the pile regrades; this is
required as the rice pile is an open system and hence efflux still occurs whilst the mass regrades.
Here, a has a value of 1.38+0.13 (n = 8). For this experiment, Mmax is approximately 142 grams

(Figure S3.1); this will be discussed later. Over timescales greater than Tws, the rice pile
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experiences avalanches that are of the order of system size, which return the pile from the

maximum to the minimum slope.

Figure 3.3: Time series analysis of efflux from four experiments compared to the control experiment.

(a) Power spectra of the time series, normalized by the mean spectral power from each experiment.
Period is normalized by T (~30 seconds). (b) Comparison of timescales T and Tw, With changing
input rate, where Ty, remains constant and Tw, decreases as a function of input rate. The dashed line
shows the line of best fit for the variation in T.w. The solid red line shows the fit of the equation Twp =
a*(Mmax/Qin).

3.3.2. Shredding and detection of environmental signals

Given that autogenic processes can alter environmental signals, we explore how the sediment
transport mechanics associated with each spectral noise regime control signal propagation and
hence how both autogenic timescales, Trw and Tws Set thresholds for signal shredding and signal
detection. We define shredded environmental signals as those signals that have undergone a
severe reduction in amplitude during propagation through the rice pile. From now on these will

be referred to as degraded signals. We define detectable environmental signals as those signals
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that produce a spectral peak within a power spectrum that exceeds the range of autogenic noise;
this is defined statistically by the 95% confidence band. These concepts are defined separately
as they describe different properties of environmental signals, but we emphasize that they do
not always coincide; e.g. degradation does not define detectability. To understand thresholds
for signal degradation and detection, we ran a suite of physical rice pile experiments with
imposed sediment influx signals. The periodicities of the signals spanned the full temporal
range of autogenic timescales, from below Tn to above Twy (Figure 3.4), to delimit the

influence of both autogenic timescales. Furthermore, to understand the effect of signal

63



amplitude on signal degradation and detectability, we systematically varied the signal
amplitude for each periodicity. For parity with the control experiment, all the imposed signals
share the same mean feed rate (0.37 g s%), but decrease in amplitude from 100% to 25% of the
mean feed rate.

To quantify degradation, we require knowledge of the amplitude of the output signal relative
to the known input signal. Here, degradation is comparable to the concept of “gain” used to
analyse the propagation and preservation of environmental signals within diffusive systems
(e.g. Braun et al., 2015).

To quantify the output signal amplitude, the efflux time series from an experiment with
imposed periodicity is first divided into lengths equal to the input period. Then, the mean efflux
is taken every second over the input signal period; this mean efflux time series should
approximately resemble the input signal. To this mean efflux, we then fit a sine wave where
the period is pre-defined (the known input periodicity), but the amplitude and phase shift are
returned depending on the output signal identified. We compare the amplitude of the signal
evident in the output flux, to that of the known input signal and quantify a percentage similarity
(Figure S3.2).
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Figure 3.4: Power spectra generated from a suite of rice pile experiments with imposed signals in the
form of cyclic rice influx. Spikes in power at the imposed periodicity highlight the presence of imposed

signals. The power of the signal spike decreases as signal amplitude decreases.

Each panel contains 5 power spectra; 4 from rice pile experiments with imposed periodicity where the
imposed periodicity is constant but signal amplitude decreases in reference to the mean feed rate, and
also the spectra from the control experiment. (A) Imposed periodicity of 12s. (B) Imposed periodicity of
100s. (C) Imposed periodicity of 1000s. We highlight that spectral structure is not influenced by the
addition of external forcing. The imposed influx signals are shown in relation to both autogenic

timescales (T and Tub) by the dashed red line.
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We find that input signal periodicity is the primary control on signal degradation and that the
short autogenic timescale, Trw, Sets an upper-limit to the timescales over which signals
experience degradation (Figure 3.5A). Over all periodicities, signal amplitude does not
influence the amount of signal degradation. Signals with periodicity less than Trw experience
severe degradation, where the smaller the periodicity of the signal, the greater the amount of
degradation experienced. We highlight these signals are not completely destroyed (i.e.
shredded (Jerolmack & Paola, 2010) but are reduced in amplitude. In comparison, signals with
periodicities greater than both Trw and Tw, experience minimal degradation, where the output
signal exhibits on average 90% similarity to the known input signal over all periodicities
greater than Trw (Figure 3.5A). We note that signal amplitude does not influence the amount of
degradation a signal experiences; signals of the same periodicity are degraded by equal
amounts regardless of their input amplitude (Figure S3.3). However, we acknowledge this may

not be the case for signals with larger amplitudes (e.g., those on the order of Mmax).

We also explore the relationship between the degradation of input signals and their
detectability. To make a statistical statement about the presence of an influx signal within the
power spectra, a confidence band was generated from the background structure of autogenic
processes, which allows autogenic noise to be differentiated from imposed periodicity. We
generate a 95™ percentile confidence band from a suite of control experiments (Figure 3.2B),
all sharing the same forcing conditions, by calculating the percentage of the power spectra that
falls above a given power for each period. To quantify detectability, we compare the spectral
power of the signal spike to the spectral power of the 95% confidence band at the imposed
periodicity; detectable signals are those which breach the confidence band. We find that signals
with periodicity less than Tnw do not generate a spectral response that exceeds the 95%
confidence band and so are statistically undetectable in the output flux, regardless of amplitude
(Figure 3.5B). We acknowledge this may not be the case for signals with larger amplitudes
(e.g. those on the order of Mmax). Above T, signal amplitude influences the detectability of
signals; the greater the amplitude of the signal, the greater the ratio of the spectral peak to the
confidence band. Large amplitude signals with periodicity between Tww and Tw, are easily
detectable in the output flux, but small amplitude input signals can be rendered undetectable in
the output flux. This is because the amplitude of the signal is of the same magnitude as
autogenic fluctuations, i.e. the signals are obscured by autogenic noise. However, above Tub,
the amplitude of the resultant signal spike is much greater than that of the confidence showing

enhanced detectability. Signals with periodicity over these long timescales are greater than the
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largest autogenic fluctuations and therefore overwhelm the noise produced by autogenic
processes. Therefore, Tw, sets a temporal threshold beyond which the detectability of

environmental signals is enhanced.
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Figure 3.5: Degradation and detectability of environmental signals

(A) Signal degradation as a function of input period, measured by comparing the known input signal,
to the signal evident in the efflux from stacking multiple realizations (see Methods). (B) Signal
detectability as a function of both input period and amplitude. Power of the signal spike at the imposed
periodicity compared to the power of the 95% confidence band at the imposed periodicity. The data at
0 amplitude represents an experimental run with no imposed periodicity. Y-axis data points are
calculated as power at imposed period/power of confidence band at imposed period, hence values

greater than 1 breech the confidence band.

3.4. Discussion

3.4.1. Separating thresholds for the shredding and detection of environmental

signals

Our physical experiments show the presence of a short autogenic timescale, Trw, denoting the
red noise to white noise transition in the power spectra. Trw in the physical rice pile is analogous
to Tx found in numerical rice pile systems (Jerolmack & Paola, 2010), and our experiments
confirm that Trw provides an upper limit to the timescales over which signals experience
shredding. Jerolmack & Paola (2010) found that short period input signals (T<Ty), with
amplitudes below an exceedance that would otherwise induce system clearing events, were not
detectable in the power spectra and were described as completely obliterated (i.e. shredded).
However, we show that small amplitude influx signals can be reconstructed by stacking the

output flux if the periodicity is known, suggesting that input signals are not obliterated but
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rather severely degraded in amplitude. Small amplitude influx signals are of similar magnitude
to autogenic fluctuations within STS, so storage and release processes can physically smear
short period input signals out over a band of time (i.e. signal shredding (Jerolmack & Paola,
2010), which consequently reduces the amplitude of an input signal (degradation) and hence
the power of the input periodicity. We modify the original definition of signal shredding to: the
smearing of externally-driven signals by sediment transport processes across a range of
spatiotemporal scales, resulting in the amplitude of the environmental signal at the system
output being severely degraded when compared to the amplitude of the original signal.
Although Ty provides a threshold for shredding in the numerical rice pile, Jerolmack & Paola
(2010) did find that a separate threshold existed for the detectability of shredded signals, where
the signal produced a measurable response in the power spectra. They found that only signals
with periodicity T/Tx <0.6 are rendered undetectable in the output flux, whereas the output flux
showed evidence of periodicity when the signal periodicity was T/Tx = 0.6-1. Our physical
experiments show this is not the case. We find that all signals with periodicity less than T are
rendered undetectable in the output flux, and hence Tnw provides an upper limit for signal
degradation, and a lower limit for signal detectability.

We also find that signals with periodicity greater than T can be rendered undetectable if
obscured by autogenic noise (Morris et al., 2015). This finding augments earlier work that
hypothesised that the red noise to white noise transition acts as ‘a lower-limit on the ability to
pass and record environmental signals’ (Jerolmack & Paola, 2010). Instead, we find that signal
detectability is amplitude dependent at timescales between Trw and Twh. We show that only at
timescales greater than Twy, is faithful signal transfer expected over all amplitudes, as the signal
period is greater than the longest timescale autogenic process. Therefore, we find that it is the
truncation timescale Twn, Not Trw (Tx) that is ‘the lower-limit for the faithful propagation and
recording of environmental signals within landscapes’; a definition originally given to Tx. This
is also found to be the case for theoretical frameworks defining signal detectability for longer
timescale stratigraphic analysis (Foreman & Straub, 2017; Toby et al., 2019).

Jerolmack & Paola (2010) considered Tx (here Trw) to be comparable to the ‘basin filling
timescale’ or the ‘equilibrium timescale’ (Teq) in a deterministic diffusional framework of
landscapes, representing the time required to completely regrade surface topography to a steady
state following a perturbation (Paola et al., 1992). However, we suggest that Teq IS more
appropriately approximated by the longer autogenic timescale Twb, which comes about through

the shared property of complete surface regrading or topographic filling, that takes place over
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these timescales. Whilst Tw, and Teq are comparable regeneration timescales, Trw and Teq both
denote upper limits to the timescales over which environmental signals experience degradation;
signals propagating through a diffusional system do not experience a reduction in amplitude
(“gain”) when the signal period considerably exceeds Teq (McNab et al., 2023). However, the
timescales over which signal degradation occurs in stochastic systems (<Trw) could be up to an
order of magnitude less than within diffusional systems (if Tws is approximately equal to Teg),
but this is dependent on the mechanics of sediment transport within the system and the influx
rate to the system, which governs the separation of Try and Tws. The reason for this difference
in behaviour is that a periodic sediment supply signal will pass unimpeded through a diffusive
system (i.e. no degradation) once a system-wide topographic steady state is achieved (Straub
et al., 2020), whereas, in stochastic systems, the signal period must only exceed that of the
largest autogenic event. As autogenic processes have no role within a diffusion framework due
to the averaging of lateral stochastic system dynamics, T does not exist and signals can
therefore only be related to Teq. This leads to a loss of predictive capability when evaluating
the limits of environmental signal propagation across the Earth’s surface, as only long
timescale signals can be assessed (Toby et al., 2022). As autogenic processes are inherent to
3D STS and set a lower limit for signal propagation and preservation, any theoretical

framework must incorporate stochastic dynamics.

3.4.2. The detectability of shredded signals

At timescales less than Trw we find signal amplitude to have no effect on the degree of signal
degradation, but we acknowledge that a threshold must exist within the system beyond which
high amplitude short-period input signals are detectable in the output flux. This amplitude or
magnitude threshold (M) is expected to scale with the maximum size of autogenic events in the
numerical rice pile , i.e. M ~ LS, where S is the critical threshold slope (Jerolmack & Paola,
2010). In the numerical rice pile, M represents the maximum volume of rice effluxed over the
longest avalanche event (analogous to Mmax in this study). M was defined on the basis that the
short autogenic timescale scaled with sediment flux (e.g. a volume filling timescale, equivalent
to Teq; (Jerolmack & Paola, 2010), which we show not to be the case for Tr, but instead applies
to the longer autogenic timescale, Twp. Therefore, we postulate that the amplitude required for
a degraded influx signal to be detectable is much lower than M, as the signal amplitude is only
required to exceed that of individual autogenic events, rather than the mass required to achieve
a system-wide topographic steady state. Furthermore, in the numerical rice pile, the model does

not allow for grains to propagate through the model without experiencing storage (analogous
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to washload sediment in rivers). In this model, grains that enter the model at the top of the pile
instantly ‘stick’ at the input location and remain in the model unless liberated by an avalanche.
However, in the physical rice pile (and STS), grains have the ability to propagate through the
system with minimal storage. Therefore, the inclusion of suspended and/or washload sediment
increases the efficiency of signal propagation. These reasons allow us to anticipate that

amplitude required for the detectability of degraded signals is much lower than M.

The amplitude of the largest signals T<T imposed onto the physical rice pile is equal to the
mean feed rate, with a total influx much lower than Mmax, and hence are severely degraded and
undetectable in the output flux. However, we suggest that if the signal amplitude exceeded the
mean feed rate, or the rate at which the influx rate varied was increased, the signal would be
degraded by the same amount but would be detectable in the output flux. A square wave input
signal with periodicity less than Ty and an amplitude equal to the mean feed rate was imposed
onto the physical rice pile and produced a detectable response in the output flux (Figure S3.4).
We hypothesize this to be the case as the total mass influx of a square wave signal is greater
than that of a sine wave signal over the same periodicity. This means that a signal can be both
severely degraded in amplitude, but the spectral spike can exceed the 95% confidence band.
Once the amplitude of the signal is equal to or greater than Mmax, these signals will overwhelm
the magnitude of the autogenic processes, and hence we hypothesize that these signals will pass
through the system without experiencing degradation. A pathway for future work will be to
quantify the amplitude threshold over which short-period signals experience no degradation

and explore the nature of this threshold as a function of input periodicity.

While quantifying the effects of autogenic processes is important for understanding signal
shredding, we note that quantifying the detectability of signals over all periodicities in
landscapes and sedimentary layers takes precedence when reconstructing past environmental
signals from landscapes and strata. Power spectra are the most common method used to search
for evidence of environmental signals from a time series of stratigraphic measurables.
However, the use of power spectra alone is insufficient if signals have been rendered
undetectable due to degradation/obscuring by autogenic noise. In this case, the only way to
truly show the presence of external signals is if one knows for certain the periodicity and can
stack multiple realizations of the signal to reconstruct it. However, when working with time
series generated from stratigraphic measurables, the messy conversion of space to time (e.g.
the assumption of linear sedimentation rate) brings substantial error into a reconstructed time

series over meso-timescales (~10* — 10° years) (Sheets et al. 2002; Straub & Wang, 2013;
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Foreman & Straub, 2017; Straub et al., 2020). This, alongside the lack of knowledge of the
imposed periodicity to search for, makes this methodology generally unfeasible and hence we
have to rely on power spectra. If environmental signals could be identified in a time series
without the use of power spectra (e.g. the time series has excellent age control so the signal
could be reconstructed by stacking the time series), this would remove the requirement to
define appropriate statistical thresholds (i.e. confidence levels) to differentiate signal from
noise in power spectra. This is beneficial, as the application of ill-fitting thresholds can generate
false positives and promote misinterpretations regarding the presence of periodicity (Vaughan
et al., 2011). The identification of environmental signals from power spectra is aided by
knowledge of key autogenic timescales, such as those presented here. For example, the
interaction between an environmental signal of known periodicity and autogenic processes can
guide scientific practitioners as to whether a signal is not detectable due to shredding (T< Trw)

or whether the signal has been obscured by autogenic noise (T>Tnw).

3.4.3. Rice piles to landscapes to strata

The specific sediment transport and storage mechanisms within an STS will determine the
nature and timescales of autogenic processes, which mediates how STSs might transmit
environmental signals (Hajek & Straub, 2017; Scheingross et al., 2020; Toby et al., 2022). In
the physical rice pile, the temporal extent of correlation (i.e. red noise up to Trw) is defined by
the duration of individual avalanche events. The rice pile is analogous to an individual
component or segment of a STS, such as a hillslope experiencing sediment transport events of
all sizes, with the largest event being a landslide. In this example, it is the duration of individual
sediment transport events (or autogenic processes) within a single segment that defines the
temporal extent of correlation. However, when considering a STS with multiple, linked
segments, the sediment efflux out of one segment becomes the sediment influx to the next (e.g.
sediment transport from a hillslope segment to a fluvial segment in a catchment). Therefore, in
order for the sediment flux from a hillslope to be measured at the catchment outlet, it must
propagate from the hillslope into the fluvial network. This means that rather than the absolute
duration of individual sediment transport events defining the extent of correlation, we
hypothesize that it is instead the time required to evacuate the sediment from the hillslope to a
valley and ultimately into the fluvial system and hence be measured at the catchment outlet.
This means that the (dis)connectivity of STS segments could influence the extent of correlation
and the timescales of autogenic processes evident from a time series of sediment flux at the

catchment outlet (Wohl et al., 2019). For linked segments of a hillslope-fluvial system, the
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timescales of correlation would relate to the time required to remove and redistribute sediment
from the hillslope to the fluvial network. If the hillslope-fluvial system is well connected,
sediment delivered from the hillslope segment is fed directly into the fluvial segment, hence
we hypothesize that time required to evacuate sediment from the catchment is short, and hence
Tww is short. This also means that the STS could convey sediment flux signals effectively
through consecutive STS segments (Tofelde et al., 2021), depending on the autogenic
processes and storage capacity of the STS segment in question (Toby et al., 2022). On the other
hand, if a hillslope-fluvial system is disconnected, sediment is stored on the hillslope where it
is gradually removed and transported to the river network. This gradual liberation of sediment
enhances the sediment flux exiting the catchment over long timescales (Clapuyt et al., 2019).
Many extremely large landslide deposits can remain in mountain landscapes for up to 10 years
(Korup et al., 2010), which contributes to sediment flux exiting the catchments over these
timescales. This means that although the absolute landslide duration on the hillslope is short-
lived, the time to evacuate the associated sediment from the catchment by fluvial processes is
much longer, which we hypothesize will extend the timescales of temporal correlation (e.g. red
noise) (Korup et al., 2010) and hence the timescales over which signals will experience
shredding. From the above it is evident that the interconnection of STS segments strongly
influences the spectral geometry of influx at the outlet of the connected segments and controls

how signals propagate between and through them (e.g. Toby et al., (2022)).

We find that T in the physical rice pile is independent of the rate of sediment supply, however
the behavior of smaller avalanche dynamics is not. The greater the sediment supply rate, the
more frequent the occurrence of smaller avalanches in the rice pile (Figure S3.5), however, the
frequency of the largest avalanches converges at the size of the largest system-scale event.
Conversely, for natural and experimental STSs this timescale is unlikely to be independent of
the rate of sediment supply because topography can be built and filled faster with an increased
sediment supply rate. For example, temporal correlation (red noise) in a cellular automata
model of alluvial transport (Jerolmack & Paola, 2007) extends up to a maximum timescale of
river avulsion, and within a single deltaic system, the maximum autogenic timescale is denoted
by a system-wide, lobe movement event and associated compensational filling of topography
(Straub, 2019). In each case, the maximum autogenic timescale is akin to Trw in the physical
rice pile, but unlike Trwthey are dependent on the rate of sediment supply (Bryant et al., 1995).

Further work is needed to investigate the mechanisms that contribute to the longest duration

72



autogenic events, which will define the autogenic timescales in both experimental and field

scale systems.

Limitations of stratigraphic datasets (e.g. limited outcrop exposure, incompleteness and the
assumption of linear sedimentation rate) make it difficult for field practitioners to explore
details of autogenic processes over geological timescales. High resolution time series of surface
sediment fluxes and preserved deposition rates of an experimental delta run under constant
boundary conditions (Straub et al., 2015) allow us to study the structure and timescales of
autogenic processes in a system more analogous to that of field scale systems, and one that
contains morphodynamic behaviour. We create power spectra of surface sediment flux from
the terrestrial delta top to the marine, analogous to the efflux of rice from the rice pile (Figure
3.6), which reveals temporal correlation (red noise) over all timescales up to the compensation
timescale, Tc (Wang et al., 2011). T¢ represents the truncation timescale of depositional
processes in natural systems (Ganti et al., 2011), analogous to Twp that represents the largest
autogenic event in the rice pile, and defines the maximum timescale of autogenic organization
in stratigraphy (Sheets et al., 2002; Wang et al., 2011). As with Twp in the rice pile, the
compensation timescale denotes a detectability timescale for signals within channelized
systems, whereby input signal periodicity greater than T. are more likely to be recorded in both
landscapes and strata (Li et al., 2016; Foreman & Straub, 2017; Toby et al., 2019). At
timescales greater than T, anti-correlation (blue noise) persists over all subsequent timescales.
This spectral geometry is maintained within spectra generated from a time series of preserved

deposition rates generated from the same experiment (Figure 3.6).
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Figure 3.6: Surface morphology and power spectral analysis from delta basin experiment TDB-12-1 (Straub
etal., 2015).

(A) Overhead photo from the delta basin experiment. Power spectra for preserved deposition rates were
generated at every point (5mm spacing) from the centre portion of the radial white line, from which an average
spectrum was generated. (B) Power spectra generated from a time series of sediment flux to the marine using
the multi-taper method. Time is normalized by the compensation timescale, Tc (~49 hours). (C) Power spectra
generated from a time series of preserved deposition rates (Figure S6), using the multi-taper method. The black
line defines the ensemble average power spectra. normalized by the long-term accommodation generation rate

(0.25mm h%). Time is normalized by the compensation timescale, Tc (~49 hours).

Unlike the rice pile, power spectra generated from the experimental delta do not exhibit a white
noise regime. Building on our understanding of physical rice pile processes and their
contribution to autogenic spectral structure, we note that a white noise regime will not be
present when the timescale of the longest correlated event (i.e. Trw) is equal to or exceeds the

regeneration timescale (Twb). The convergence of these timescales in the power spectra of the
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experimental delta defines only one spectral rollover from red to blue noise. We hypothesize
this to be because the duration of the maximum autogenic timescales (i.e. a system-wide, lobe
movement event) and the compensation timescale (Tc; approximately 49 hours for this
experiment (Hajek & Straub, 2017)) are of the same order of magnitude. Therefore, we
emphasize that the spectra produced from a time series of landscape or stratigraphic
measurables may not necessarily exhibit tripartite geometry, as this is dependent on system
size and sediment supply rate which controls the relationship between Ty and Tw, and so
therefore the presence and duration of white noise. However, a long time series generated from
landscape or stratigraphic measurables that is of sufficient temporal resolution should reveal
both red and blue noise. The convergence of timescales could also happen in other geomorphic
systems, such as landsliding in mountain catchments, whereby a tripartite spectral geometry
would be prevalent when the reoccurrence interval of landslides exceeds the time needed to
evacuate the landslide sediment from the catchment by fluvial processes. However, if the time
to evacuate landslide sediment exceeds the reoccurrence interval, we expect this would result
in a condensed spectral geometry showing one spectral rollover between red and blue noise

(i.e. no white noise).

Within the rice pile Trw and Twp are linked by the maximum-size autogenic event, whereby Trw
represents the longest avalanche duration to evacuate this rice mass and Twp represents the time
required to regrade the rice-wedge with this same amount of mass. To investigate whether this
parity of mass or volume might exist in close analogues of field scale systems, we use volume
fluxes from the experimental delta. Specifically, we calculate the volume of sediment exported
between large scale lobe movement events, representing the largest avalanche, to be
approximately 0.030 m?; and the volume of sediment required to regrade delta topography by
one channel depth, representing the regrading of the sediment wedge, to be approximately
0.024 m3. The large-scale lobe movement events analysed on the delta were limited to
timescales less than T¢, which is defined on the basis of the time taken to deposit one channel
depth across the delta. We once again advocate that T is analogous to the wedge filling

timescale Tup.

3.4.4. The severity of the signal shredder

Although autogenic processes within landscapes and strata show comparable temporal
structure containing both red and blue noise, we have evidence that the shredding process may
operate with differing severity. The spectral growth index (e.g. gradient of red noise) varies
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between the spectra, with the deposition rate power spectra following a much lower index value

than the surface delta fluxes or rice pile (o = 0.8 versus o = 1.3 and a = 2.2 respectively).

Systems which evolve towards a critically self-organised state are defined as having spectral
growth at 1/f (e.g. pink noise, o.=1) (Bak et al., 1987), where noise in the system is moderately
correlated (Grumbacher et al., 1993). We find that over short timescales, the surface delta
fluxes have moderate correlation, with spectral growth at approximately 1/f (o= 1.3), whereas
the rice pile has strong correlation, with spectral growth is approximately 1/f? (e.g. red noise,
a = 2) (Grumbacher et al., 1993). Over these timescales, the strength in the correlation of the
system indicates the frequency of erratic behaviour away from the mean state; the stronger the
correlation, the less frequent the chance of erratic behaviour. To explain this, we refer to the
dynamics present within a delta. When a channel network is stable on a delta top, the fluxes to
the marine are consistent at high rates until the channel network collapses. The consistency of
the channel network allows for the efficient propagation of sediment down system. However,
during this period of stability, events such as infrequent breaches may occur that divert water
and sediment to the delta-top for short time periods, but do not trigger an avulsion event. This
is defined as erratic behaviour; e.g. a rapid, temporary change in the system. This long-term
stability intermixed with short term temporary fluctuations manifests as approximately 1/f
noise in surface delta fluxes. However, we find that depositional fluxes have weak correlation,
with spectral growth less than a = 1, indicating that the system has a considerable chance of
being driven in a different direction at any time. Within the delta system, we hypothesize that
the correlation in the system is defined by periods of no-deposition, and hence during a period
of stasis, the system will tend to remain in stasis up to a maximum timescale of Tc. However,
periods of deposition and erosion (over a range of spatiotemporal scales) interrupt periods of

no-deposition (e.g. long-term erratic behaviour) which weakens the temporal correlation.

The differences in the strength of the correlation between surface and stratigraphic records
could suggest variations in the intensity of the shredding process. Within pink noise (a ~1) and
red noise (a ~ 2) systems, the stability of the STS could suggest short-period signals propagate
more effectively. Whilst these signals would still experience some degradation, as they do not
overwhelm autogenic fluctuations, their propagation is relatively uninterrupted. For example,
when the channel is stabilized on a delta top, consistently high sediment flux rates allow for
effective sediment transport down system. This would result in overall less degradation and
possibly allow the imposed signal to be reconstructed by stacking records at the known

periodicity. However, the erratic correlation present in systems where a <1 (e.g. interruptions
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in sediment transport and deposition) suggests a stronger ability to smear signals through space
and time. In these systems, the balance between deposition, erosion and stasis is highly
variable. Hence, the greater the lateral mobility of the system, the greater the chance of hiatuses
and/or reworking of previously deposited sediment by erosion (e.g. the occurrence of long-
term erratic behaviour) and hence the lower the rate of spectral growth. This may result in a
signal being completely obliterated (i.e. no returnable amplitude in a time series of sediment
flux). If the severity of the degradation process does inversely scale with alpha, our results

suggest that the depositional filter could act as a “super shredder” of environmental signals.

Signals with periodicity less than Trw can sometimes be reconstructed from stacking landscape
records, but this requires the record to be many multiples of the imposed periodicity allowing
the transport system noise to be averaged. Furthermore, signals with periodicity between T
and Twb can be detected or obscured within a landscape depending on the amplitude of the
signal. However, any signal detectable within landscape records may not be of sufficient
periodicity or magnitude to overcome the longer, harsher stratigraphic shredding regime.
Therefore any resemblance of a signal would be completely removed within a time-series of

stratigraphic measurables (Toby et al., 2019; Straub et al., 2020).

3.4.5. The nature of autogenic processes

The longest autogenic timescales evident in landscapes and strata (Twn or Tc) define rollovers
to a blue noise regime within power spectra. Although the presence of this spectral regime is
intuitive, it is rarely acknowledged in spectra generated from stratigraphic measurables;
instead, spectra are described to be dominated by the presence of commonly known red and
white noise (Weedon, 2003; Vaughan et al., 2011). The lack of identification could be a result
of how power spectra are commonly plotted; plotting power spectra as a function of frequency
renders blue noise more difficult to identify than if plotted as a function of period. However if
blue noise is simply not present, this could result from the lack of availability of long-time
series datasets (either due to insufficient duration of the instrumental record or due to the
availability of outcrop exposure), the incompleteness of the stratigraphic record favouring
high-frequency fluctuations (Straub et al., 2020), the messy conversion of space to time from
stratigraphic measurables (e.g. the assumption of linear sedimentation rates) (Barefoot et al.,
2023), or the lack of dynamic equilibrium in STSs, generating non-stationary statistics and
therefore rendering blue noise unobservable (Muto et al., 2007). The unknown presence of blue

noise within power spectra generated from stratigraphic measurables has implications for
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generating statistical tests to detect the presence of environmental signals (Hajek & Straub,
2017). The application of the autoregressive lag 1 (AR1) model (Pemberton & Priestley, 1990),
typically for paleo-climatic studies, does not fully represent the spectral background structure
generated by geomorphic variability (Foreman & Straub, 2017), which could produce false
positives and spurious signals. To ensure accurate detection of environmental signals, spectral
estimations must provide a strong fit to the background structure. The potential universality of
the presence of blue noise within the temporal structure of autogenic processes highlights the
requirement to generate a statistical model to fit power spectra of this structure, which will

allow the accurate detection of environmental signals over all autogenic timescales.

Overall, two key timescales emerge from the study of autogenic dynamics within a physical
rice pile experiment which provide thresholds for both signal degradation (Tnw: the event
duration timescale) and enhanced signal detection (Tws: the system regrading timescale). The
autogenic timescales presented provide a framework to predict the severity of signal shredding
across the Earth’s surface and to strata, and establish robust confidence limits of signal
detectability in landscapes and strata. We highlight the applicability of this framework to all
segments of a sediment routing system (for example, erosive catchments experiencing land
sliding or fluxes to the deep marine) alongside systems that experience environmental

stochasticity (e.g. earthquakes, storms and floods; (Straub et al., 2020)).

3.5. Materials and methods

3.5.1. Experimental design

A suite of rice pile experiments were conducted in the Sediment Dynamics Laboratory at
Tulane University, to characterise the nature of the autogenic dynamics and assess the degree

to which key autogenic timescales provide thresholds for signal shredding and detection.

The experimental apparatus is constructed of two vertical, parallel glass sheets 37.5cm long,
positioned 2.6cm apart. Rice was fed (influx) to the pile from a dry particle feeder (Schenk
Accurate) positioned 8mm from the top surface, allowing a rice pile to form at a critical angle
so that a dynamic topographic equilibrium was achieved. Over the suite of experiments, influx
was defined between a minimum and maximum range (0 g s and 0.78 g s1), controlled at 1
second intervals via a computer connected to the sediment feeder which directly feeds the pile.
Efflux was measured at approximately 1 second intervals using an Ohaus EX12002 balance
(accuracy and precision of 0.1 grams). The balance has a maximum mass of 12kg, and all
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experiments were run until the balance was saturated. The dimensions of rice grains used in
the experiments have a diameter of 2.5£0.5 mm, length of 8+0.5 mm and a mass of 0.02 grams
(Table S2:). The experimental set-up used here is similar to that of the physical rice pile of
Frette et al., (1996).

To ensure the efflux data are driven only by the internal autogenic dynamics of the rice pile
and not triggered by external noise, we analysed accelerations within the room when the
sediment feeder was on and off, when sediment feeder was on but with no rice delivery, and
when rice was delivered (Figure 2.2). Accelerations were measured using the Phyphox
application on an iPad, which records X, y and z accelerations at an increment of ~0.05 seconds
to two significant digits of acceleration with Sl units. The raw acceleration data, alongside
power spectra of the time series, were analysed to confirm external vibrations were not

triggering avalanches, or that external vibrations did not occur at repeating frequencies.

A series of experiments were conducted where rice was fed directly from the sediment feeder
to the scale, to confirm we had high temporal control over the influx rates and cycles imposed.
We generated power spectra from the time series, which confirms white noise was present

across all frequencies, except a spike in power if periodicity was imposed (Figure 2.3).

Firstly, a control experiment was run for 9 hours with a constant influx rate of 0.37 g s*. The
influx rate denotes the mean rate of the sediment feeder, and experimental run time was defined
by the time to saturate the balance at the defined influx rate. This experiment was used to define
the full spectral structure generated by a physical rice pile and quantify autogenic timescales
evident from rollovers between spectral regions. Using this baseline behaviour, a suite of 9
experiments (Table S1). were used to explore the influence of influx rate on the autogenic
dynamics and timescales found in the control experiment. These experiments varied
systematically in intervals of approximately 0.1 g s from the minimum to the maximum influx

rates available on the sediment feeder.

To explore limits of signal shredding and signal detection, a matrix of 36 experiments were run
with cyclic influx of different periods and amplitudes. To achieve parity with the control
experiment, a mean influx rate of 0.37 g s was attained for all cyclic experiments. 9
periodicities were chosen to cover the range of autogenic timescales evident in the control
experiment: 6s, 12s, 24s, 48s, 100s, 250s, 500s, 1000s and 2000s. The amplitude of the cycles
were chosen as percentages of the mean feed rate (0.37 g s2), increasing in 25% intervals from
25% (0.0925 g s™) to 100% (0.37 g s™).
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3.5.2. Signal detection from power spectra

Discrete time-power spectral densities of efflux time series (power spectra) were generated
using the multi-taper method (MTM) with 2 tapers. Key autogenic timescales can be observed
by eye on the power spectra as ‘roll-overs’ or ‘gradient-breaks’. To delimit these timescales
accurately we use the ‘findchangepts’ function in MATLAB. This function is controlled by
two key input parameters: the maximum number of changes and the type of change to detect
(e.g. variations in mean, standard deviation, gradient). For our spectra, we specify 2 changes
(to account for the presence of two rollovers in the spectra) and use linear as the type of change
to detect, applied on log transformed spectral data. This method detects changes in the mean
and slope of the input spectra, which can be inverse log transformed to solve for the power-law

exponent of the fit.

To make a statistical statement about the presence or not of an influx signal in the power
spectra, a confidence band for the discrete time-power spectral densities is required. Using 25
realizations of the control experiment, we generated power spectra for each realization. For
each periodicity, we rank the associated power values from all 25 spectra into ascending order
to calculate the percentage of the realizations that fall above a given power for each period.
From this, we calculate an estimate of the 95" percentile confidence band.

3.5.3. Signal degradation

To quantify the amount of degradation a signal experiences during propagation, we stack the
efflux time series into lengths equal to the input period, and take the mean of the efflux for
each second over the imposed periodicity. From this, we gain a mean ensemble efflux to which
we fit a sine wave with a period equal to the known input, and are returned an amplitude and
phase based on the signal present in the mean ensemble efflux. We compare the amplitude of
the signal evident in the ensemble efflux, to that of the known input signal and quantify a

percentage similarity (Figure S3.2)
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This chapter characterises the temporal spectral of autogenic processes within the physical rice
pile (an idealised STS) and provides a theoretical framework for the degradation and detection
of environmental signals based on the autogenic timescales present within a STS (Research
Question 1). The temporal structure of autogenic noise within the physical rice pile is found to
contain three regimes: red noise over short timescales, white noise over intermediate
timescales, and blue noise over long timescales. The breaks in the noise regimes delimit two
autogenic timescales: Trw and Twn (Objective 1.1). Trw is found to delimit the duration of the
largest sediment flux event, whereas Twp is found to be a regrading timescale that scales with
influx rate (Objective 1.2). These two timescales denote thresholds for the occurrence of signal
degradation and detection. Trw provides an upper limit to signal degradation and a lower limit
to signal detection, whereas Twp provides a lower limit to enhanced signal detection (Objective
1.3).
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Figure S3.1: Calculation of Mpax.
Left: Time series of efflux over the duration of the largest avalanche in the rice pile. Right: Maximum

mass effluxed over increasing time windows of observation, where at timescales greater than T,
maximum mass plateaus
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Figure S3.2: Methodology to determine the amount of degradation a signal has experienced during
propagation.

The raw efflux time series is generated for an experiment with imposed cyclicity (here, period 100s,
amplitude 0.37 g s). Then, the efflux is divided into lengths equal to the period of the input signal and
the mean efflux over each second of the imposed periodicity is calculated. After this, a sine wave is
fitted to the stacked data, where the periodicity is defined and the amplitude and phase is calculated
based on the individual dataset. The amplitude of the output signal is then compared to the amplitude

of the known input signal to calculate percentage similarity.
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Figure S3.3: Signal degradation as a function of both input period and amplitude.
Signals with periodicity below T experience severe degradation, whereas signals with periodicity

greater than T, experience minimal degradation.

2.5 — ; : H
W Period =6s
Period = 12s
¥  Period = 24s
2r 4
16:F

>

Relative spectral signal amplitude

7
1 % v
v

05 % . . . . . . . . . .
01 02 03 04 05 06 07 08 09 1

Input signal amplitude/mean input rate

Figure S3.4: Detectability of square wave input signals with periodicity less than T and with an

amplitude equal to or below the mean feed rate.

Power of the signal spike at the imposed periodicity compared to the power of the 95% confidence band
at the imposed periodicity. The data at 0 amplitude represents an experimental run with no imposed
periodicity. Y-axis data points are calculated as power at imposed period/power of confidence band at

imposed period, hence values greater than 1 breech the confidence band.
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Figure S3.5: Distribution of avalanche sizes within the efflux time series from nine experiments with
increasing influx rate.

All the time series show a heavy-tailed distribution, however as the influx rate increases, there is an
increased probability of a certain sized event occurring, but the distributions converge at the largest

event
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Figure S3.6: Time series of surface and stratigraphic dynamics from the delta basin

Left: Time series of sediment flux to the marine realm, versus sediment flux to the terrestrial deposit
within the experimental delta basin. The time series is generated from experiment TDB-12-1 (Straub
et al., 2015). The time series of sediment flux to the marine was generated as follows. Topographic
maps were taken over the duration of the experiment. Successive topographic maps were differenced
to generate an isopach map (map of sediment thickness). Using the measured and imposed sea level
each hour, all pixels in the terrestrial realm on the isopach map were summed, and this was multiplied
by the x and y node spacing on the map to get a bulk volume of sediment deposit in the terrestrial over
this time period. Then, a bulk sediment flux to terrestrial deposition was calculated by dividing by the
time between the maps, and then converted to a volumetric sediment flux to terrestrial deposition by
multiplying the bulk sediment flux by the fraction of the deposit which is sediment (1-porosity). This
has been previously measured as 0.5 with the same mixture of sediment. To get a mass flux to terrestrial
deposition, the volumetric flux was multiplied by sediment density (2650 kg m™). The mass flux to
terrestrial deposition was then subtracted from the known mass input flux (1.41 kg hour™) to get the
flux to the marine. Right: Time series of preserved deposition rates measured from data points spaced

5mm apart along a radial arc within the experimental delta basin.
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Table S3.1: Supply characteristics for the individual rice pile experiments, both constant and cyclic

feed rates
Desired mean Actual mean .
; - Period of Amplitude of
Experiment Stage feed ra}';e (gs feed;?)te (g forcing (s) forcing (g 5™
1 Control 0.37 0.358 - -
2.1 Steady 0.02 0.027 - -
2.2 Steady 0.041 0.052 - -
2.3 Steady 0.196 0.22 - -
2.4 Steady 0.25 0.28 - -
2.5 Steady 0.3 0.29 - -
2.6 Steady 0.6 0.73 - -
2.7 Steady 0.78 0.99 - -
2.8 Steady 1.76 2.1 - -
3.1 Cyclic 0.37 0.358 6 0.37
3.2 Cyclic 0.37 0.358 6 0.2826
3.3 Cyclic 0.37 0.358 6 0.185
3.4 Cyclic 0.37 0.358 6 0.0925
3.5 Cyclic 0.37 0.358 12 0.37
3.6 Cyclic 0.37 0.358 12 0.2826
3.7 Cyclic 0.37 0.358 12 0.185
3.8 Cyclic 0.37 0.358 12 0.0925
3.9 Cyclic 0.37 0.358 24 0.37
3.10 Cyclic 0.37 0.358 24 0.2826
3.11 Cyclic 0.37 0.358 24 0.185
3.12 Cyclic 0.37 0.358 24 0.0925
3.13 Cyclic 0.37 0.358 48 0.37
3.14 Cyclic 0.37 0.358 48 0.2826
3.15 Cyclic 0.37 0.358 48 0.185
3.16 Cyclic 0.37 0.358 48 0.0925
3.17 Cyclic 0.37 0.358 250 0.37
3.18 Cyclic 0.37 0.358 250 0.2826
3.19 Cyclic 0.37 0.358 250 0.185
3.2 Cyclic 0.37 0.358 250 0.0925
3.21 Cyclic 0.37 0.358 500 0.37
3.22 Cyclic 0.37 0.358 500 0.2826
3.23 Cyclic 0.37 0.358 500 0.185
3.24 Cyclic 0.37 0.358 500 0.0925
3.25 Cyclic 0.37 0.358 1000 0.37
3.26 Cyclic 0.37 0.358 1000 0.2826
3.27 Cyclic 0.37 0.358 1000 0.185
3.28 Cyclic 0.37 0.358 1000 0.0925
3.29 Cyclic 0.37 0.358 2000 0.37
3.3 Cyclic 0.37 0.358 2000 0.2826
3.1 Cyclic 0.37 0.358 2000 0.185
3.2 Cyclic 0.37 0.358 2000 0.0925
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4. The incomplete record of autogenic processes sets limits on signal detectability.

This chapter has been published as: Griffin., C., Duller, R.A., & Straub, K.-M (2024). The
incomplete record of autogenic processes sets limits on signal detectability. Journal of
Geophysical Research: Earth Surface, v 129 (4), e2023JF007538

When this thesis was initially submitted, Chapter 4 was in review at JGR: Earth Surface. This
has now been published in JGR: Earth Surface as of 01/04/2024. Since review, the only
significant changes have been clarifying section 4.4.2 and rewriting section 4.4.3 to add clarity

to the workflow.

Abstract

Spectral analysis is a central tool regularly used by the scientific community to identify the
presence of periodic processes within a time series of information, as spectral peaks at an
imposed periodicity can be differentiated from internal (autogenic) variance. In scientific
disciplines, such as seismology, the time series of information is of high temporal resolution.
Hence, although temporal gaps are present, they do not impact the overall noise structure,
meaning the full spectrum of autogenic variance can be reconstructed. However, power spectra
generated from stratigraphic information are affected by temporal incompleteness due to
varying episodes of erosion and geomorphic stasis which generate gaps over a range of scales.
This removes information related to the natural, autogenic, variability present within sediment-
transport systems which makes it challenging to accurately reconstruct the structure and
strength of paleo-surface processes, which defines the detectability of past environmental
signals. We explore how incompleteness impacts the temporal structure of autogenic noise
within power spectra, and how this influences the detectability of spectral spikes related to
environmental signals. We utilise a sediment flux time series from a physical rice pile and
progressively degrade this data to mimic varying degrees of stratigraphic incompleteness. We
find that incompleteness strongly influences the timescales and spectral structure of autogenic
noise evident, and can render signals over all periodicities undetectable within a highly
incomplete time series. This offers the ability to confidently justify the interpretation of subtle
environmental signals from field measurements and understand the records that may best

preserve paleoenvironmental variability.
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4.1. Introduction

The internal dynamics within sediment-transport systems (STSs) are characterised by local
episodes of sediment storage and release that occur naturally, known as autogenic processes,
which are ubiquitous across all landscapes and generate stochastic fluctuations in sediment
transport in the absence of external (allogenic) forcing (Hajek & Straub, 2017; Jerolmack,
2011; Jerolmack & Paola, 2010; Kim & Jerolmack, 2008a; Paola, 2016; Pelletier et al., 2015;
Romans et al., 2016; Straub et al., 2020). Stochastic sediment transport resulting from
autogenic processes generates noise within a STS, and the resultant stratigraphy, and limits the
predictability of STS dynamics (Ganti et al., 2014; Hajek & Straub, 2017; Jerolmack, 2011,
Jerolmack & Paola, 2010; Paola, 2016; Romans et al., 2016; Van De Wiel et al., 2011). The
duration and magnitude of autogenic processes within STSs determines the structure and
timescales of autogenic noise present (Griffin et al., 2023; Hwa & Kardar, 1992; Jerolmack &
Paola, 2010). Autogenic noise has a distinct tripartite structure composed of three noise
regimes, delimited by two autogenic timescales. The first regime comprises temporal
correlation (red noise) over short timescales, where spectral power increases as a function of
period. The second comprises no correlation (white noise) over intermediate timescales, where
spectral power plateaus. The third regime comprises anti-correlation (blue noise) over long
timescales, where spectral power decreases of a function of period (Griffin et al., 2023; Hwa
& Kardar, 1992). Whilst the tripartite structure should be evident in all stochastic natural
systems, the presence of all three noise regimes depends on the relationship between the
autogenic timescales; where these timescales converge, power spectra may only display red
and blue noise (Griffin et al., 2023).

The two autogenic timescales denote temporal thresholds for the degradation and detectability
of sediment flux signals, generated by external environmental perturbations (Griffin et al.,
2023; Jerolmack & Paola, 2010). Whilst signal degradation severely reduces the amplitude in
comparison to the input signal (‘shredding’), signals can undergo no modification but be
rendered undetectable, if the signal magnitude is similar to that of autogenic processes (Griffin
et al., 2023; Jerolmack & Paola, 2010). Therefore, characterizing the temporal structure of
autogenic processes from a time series of stratigraphic information enables the accurate
reconstruction of paleo-surface processes, and allows theoretical frameworks which predict the
degradation and detectability of sediment flux signals in both landscapes and strata to be fully
utilised (Jerolmack & Paola, 2010; Toby et al., 2019).
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Theoretical frameworks for signal degradation and detection rely on the full characterization
of the structure of autogenic processes within a specific STS. This has been achieved for an
exquisitely preserved time series of sediment flux and preserved deposition rates measured
from physical experiments (Griffin et al., 2023; Hajek & Straub, 2017; Jerolmack & Paola,
2010; Toby et al., 2019). However, a time series of stratigraphic information is inherently
incomplete, owing to the presence of hiatuses over a variety of spatiotemporal scales from
laminae to basin-scale unconformities, which reduce the preservation of autogenic processes
within vertical sections (Ager, 1973; Davies et al., 2019; Foreman & Straub, 2017; Jerolmack
& Sadler, 2007; Kemp, 2012; Sadler, 1981; Schumer & Jerolmack, 2009; Sommerfield, 2006).
Within all geomorphic environments, variations exist in the duration of depositional, stasis
(non-deposition) and erosional events, driven by autogenic reorganization, which generates
hiatal surfaces with a range of frequencies and durations (Hajek & Straub, 2017; Kim &
Jerolmack, 2008b; Sadler, 1981; Sommerfield, 2006; Straub et al., 2020; Straub & Foreman,
2018; Strauss & Sadler, 1989; Tipper, 2015; Trampush et al., 2017). As a result, part of the
original autogenic signal is removed and imposed sediment flux signals can be distorted (e.g.
Burgess et al., 2019; Foreman & Straub, 2017; Trampush & Hajek, 2017), making it
challenging to accurately reconstruct sediment-transport processes and detect environmental
signals from landscapes and strata (Kemp, 2012, 2016; Kemp & Sexton, 2014; Miall, 2015;
Paola et al., 2018; Straub et al., 2020; Tofelde et al., 2021). Furthermore, limits on our ability
to date strata mean sediment age is often assigned by linear interpolation between dated
horizons (Abels et al., 2010; Ramos-Vazquez et al., 2017), providing additional challenges to
the incompleteness problem by distorting the apparent representation of time in strata, relative
to true time (Barefoot et al., 2023; Trampush & Hajek, 2017). Hence, fundamental questions
exist regarding the reliability of strata as an archive of past and future environmental change.

Analysis of a time series of stratigraphic information assumes a priori that the original, full
signal of autogenic noise is present and can be reconstructed, without deeply considering the
impact of incompleteness. Instead, the preserved noise is measured and assumed to accurately
characterise the full spatiotemporal scales of autogenic processes within landscapes and strata.
Griffin et al., (2023) find a time series of surface processes generate power spectra with
tripartite spectral structure, however, it is hypothesised that the lack of blue noise in
stratigraphic measurables could result from incompleteness, and/or the assumption of linear
sedimentation rate (Figure 1). This means that the punctuated chronology generated as a result

of stratigraphic incompleteness could significantly distort the record of autogenic processes
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(Davies et al., 2019). This has secondary consequences for the detectability of environmental
signals, which could be significantly reduced due to incompleteness, meaning periodic signals
could be defined as statistically insignificant, or missed entirely (Foreman & Straub, 2017;
Griffin et al., 2023; Straub et al., 2020). Although this is predicted, the relationship between
signal detectability and stratigraphic incompleteness, and a framework to predict signal
detectability as a function of incompleteness and input signal properties is not yet established
(Burgess et al., 2019; Foreman & Straub, 2017; Trampush & Hajek, 2017). Understanding how
incompleteness affects the preserved structure of autogenic processes is of fundamental
importance for establishing robust confidence limits for signal detectability within

environmental measurables.

Here, we quantify 1) how incompleteness modifies the preserved record of autogenic surface
processes and 2) how incompleteness influences the detectability and apparent degradation of
environmental signals from a time series of sediment flux. To do this, we utilise a physical rice
pile as an idealised STS, from which a time series of sediment flux is generated at discrete time
intervals. The rice pile can provide a basis from which natural STSs and strata can be
understood, as the complex internal dynamics which arise from storage and release along a 1D
path elucidate the nature of autogenic processes in field scale systems (Bak et al., 1987; Frette
et al., 1996; Griffin et al., 2023; Jerolmack & Paola, 2010). The distribution of these sediment
flux events within the rice pile is heavy tailed, which has also been measured and theorized for
many field scale systems. However, the statistics of these fluxes are not linked to the same
processes at play in field-scale systems, hence we do not focus on the specific processes but
rather the ramifications of having a stochastic time series of sediment flux, bound by process
timescales and finite size effects. Although the rice pile does not directly generate strata, it
produces a time series of sediment flux from a single location, which is a measurable attribute
that links both Earth surface processes and strata (Toby et al., 2022). The time series generated
is comparable to a time series of stratigraphic measurables collected from a 1D vertical section,
which provides insight into the complex internal dynamics operating up-system of this location
(Figure 4.1). Physical rice piles have been utilised to generate theoretical frameworks for the
signal degradation and detection in STSs (Griffin et al., 2023; Jerolmack & Paola, 2010). Here,
we advance this framework to understand the effect of incompleteness on the structure of
autogenic noise and the detectability of environmental signals. This will provide a robust
framework that can be used to predict the ability of various geomorphic environments to record

evidence of external environmental perturbations.
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Figure 4.1: The nature of autogenic processes and the generation of an incomplete stratigraphic record

(a) Schematic illustration of the physical rice pile run under a constant input rate, highlighting the stochastic sediment flux time-series generated, comparable
to a time-series of preserved deposition rates produced from natural systems. This generates power spectra with tripartite spectral structure defining two
autogenic timescales, Trw and Tup. (b) Autogenic dynamics within the Earth’s surface promote constant system reorganization, causing episodes of deposition,
erosion and stasis (non-deposition), generating an incomplete time series of sediment flux at a stationary sampling location, defined by the red circle. (c)
Sedimentary log taken from the red rectangle in Figure 1B. Time series of stratigraphic information, containing temporal gaps and accumulating under variable
sedimentation rates. If the absolute ages of all remaining sediment are known, the time series contains gaps of varying duration. To overcome this, the time
series is bound by sparsely dated horizons under the assumption of a linear sedimentation rate between these points.
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4.2. Materials and methods

4.2.1. Experimental design

We use a suite of rice pile experiments presented in Griffin et al., (2023). These experiments
have precisely controlled boundary conditions and generate a time series of efflux which is
100% complete, compared to the incomplete time series generated from stratigraphic
measurables. The experimental apparatus is constructed of two vertical, parallel glass sheets
0.37 m long, positioned 0.026 m apart (Figure 4.1A). Rice was fed (influx) to the pile from a
dry particle feeder (Schenk Accurate) positioned 0.008 m from the top surface, allowing a rice
pile to form at a critical angle so that a dynamic topographic equilibrium was achieved. Over
the suite of experiments, influx was defined between a minimum and maximum range (0 g s
and 0.78 g s** controlled at 1 second intervals via a computer connected to the sediment feeder
which directly feeds the pile. Efflux was measured at approximately 1 second intervals using
an Ohaus EX12002 balance (accuracy and precision of 0.1 g). The balance has a maximum
mass of 12 kg, and all experiments were run until the balance was saturated. The dimensions
of rice grains used in the experiments have a diameter of 0.0025 +0.5 m, length of 0.008 +0.5
m and an average mass of 0.02 g. The experimental set-up is similar to that of the physical rice
pile of (Frette et al. 1996)

We first utilize the control experiment, run with a constant influx rate of 0.37 g s™*. The influx
rate denotes the mean rate of the sediment feeder, and the experimental run time (nine hours)
defines the time to saturate the balance at the specified influx rate. This experiment was used
to quantify the effect of stratigraphic incompleteness on the spectral structure of autogenic
processes and to generate confidence bands to quantify signal detectability within power

spectra of tripartite geometry.

To quantify the effect of incompleteness on signal detectability and apparent signal
degradation, we utilize 36 experiments run with cyclic influx (where influx rate follows a
sinusoid) of different periods and amplitudes. To achieve parity with the control experiment, a
mean influx rate of 0.37 g s was attained for all cyclic experiments. 9 periodicities were
chosen to cover the range of autogenic timescales present (Figure 4.1): 6s, 12s, 24s, 48s, 100s,
250s, 500s, 1000s and 2000s. Signal amplitude was chosen as percentages of the mean feed
rate (0.37 g s1), increasing in 25% intervals from 25% (0.0925 g s™) to 100% (0.37 g s%).
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4.2.2. The removal and interpolation of time within a time series

4.2.2.1. Removing time from a time series

The spectral structure of autogenic processes has been quantified from a 100% complete time
series (Griffin et al., 2023); we explore the implications of imperfect sampling on the temporal
by systematically removing data from the time series. The sediment flux time series generated
from the rice pile is limited to positive values and zeros; positive values are analogous to
depositional events and zeros are analogous to stasis events. This is comparable to a time series

of preserved deposition rates generated from natural systems.

Physical experimental results suggest the duration of depositional events (tk) on deltas exhibit

an exponential distribution (Ganti et al., 2011):
PDF(t;,) = de M

Where A is a rate parameter which defines the mean number of events in an interval, here set
to 0.5 so the mean duration of depositional episodes is generally lower than the mean duration
of temporal gaps (Ganti et al., 2011). This distribution defined the amount of time kept at each

iteration.

Conversely, stasis events (tr) within a system exhibit a truncated Pareto distribution (Ganti et
al., 2011):
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Where 7 is the tail index which controls the shape of the distribution, y is the smallest time step
removed (here, set to 1) and v is the truncation parameter, which defines the largest time step
removed (here, set to 650s, which is equivalent to the longest autogenic timescale, Twb, Which
is 650s in the rice pile control experiment (Griffin et al., 2023). This distribution defines the

amount of time removed at each iteration.

To generate an incomplete time series, a random number from within the limits of the
exponential distribution is generated, defining the number of time steps kept. Following this, a
random number from within the limits of the truncated Pareto distribution was generated,
defining the number of time steps removed. This pattern was repeated for the full length of the

time series. Completeness was systematically varied between 100% and 1% by changing the
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tail index (t) of the truncated Pareto distribution between 3 and 0.05 respectively. We
acknowledge this is not exactly akin to how stratigraphy is generated; as we utilise the overall
percentage completeness of a time series, we believe this is comparable to natural systems that
produce time series with similar overall completeness. This method allows us to explore the
impact of incompleteness on both the spectral structure of autogenic processes and signal

detectability.

The new discrete time series, generated by removing proportions of time contains gaps of
varying duration. This variable discretization of time resembles the record of autogenic
processes recorded in stratigraphy that could be produced if the absolute ages of all sediment
present were known. To generate power spectra from a time series containing gaps of varying
duration, we use the Lomb-Scargle Periodogram which is the best available technique to
compute periodicity directly from unevenly sampled data (\VanderPlas, 2018).

4.2.2.2. Interpolation using an assumption of linear sedimentation rate

The lack of age constraint within stratigraphy means that generating a time series with absolute
knowledge of time is improbable. Instead, the section in question can be bound by sparsely
dated horizons under the assumption of a linear sedimentation rate between these points. This
method is applied to produce linearly sampled time series from many environmental
measurables (Sadler, 1981; Hofstra et al., 2008; Wu et al., 2013; Martinez-Grafia et al., 2016).
We utilize both these methods in order to compare the spectral structure of autogenic processes
and signal detectability generated from a time series containing temporal gaps to the record
influenced by the assumption of linear sedimentation. We interpolate the degraded time series
onto a time interval of 1 second between the first- and last-time step using the nearest neighbour
method, where the interpolated value at the query point is the value at the nearest sample grid
point. If a linear sedimentation rate is assumed in a time series of stratigraphic measurables,
beds bounding significant temporal gaps are thicker than average and are hence
overrepresented in the apparent time. The method of interpolation chosen in this work aims to
mimic this. To generate power spectra from the linear time series, we utilise the multi-taper
method (MTM) with 2 tapers (Thomson, 1982).

4.2.3. Signal detectability and apparent signal degradation

To make a statistical statement about the presence or not of an influx signal in the power spectra

generated from a time series of efflux, a statistical model with a good fit to the background
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noise spectrum must be applied from which confidence bands can be generated (Vaughan et
al., 2011).

As blue noise is present within the power spectra, the commonly utilised autoregressive lag 1
(AR1) model provides a poor approximation of the spectral structure (Figure S4.1). We
overcome this by constructing a spectral model and suite of associated confidence bands for
power spectra of tripartite structure through adaptation of the bending power law (BPL) model
(McHardy et al., 2004; Vaughan, 2010; Vaughan et al., 2011) to account for two spectral
gradient breaks. The BPL model optimizes a best fit of the function to the data and smoothly

changes from one power law to another (McHardy et al., 2004):

Nf—(xl

BPL =

Where S is the power at a given frequency, f, N is a power-law normalization factor, fy is the
frequency associated with the bend in the power-law from one trend described with a slope of

a1 to a second trend described by a slope of a2.

We augment this equation to account for two bends in the power spectra and generate the

double bending power law (DBPL) model;

Nf—al
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Where Spgpe is the spectral power at a given frequency, f. N is a power law normalization

SpepL =

factor, a1 is the slope of the power law at high frequencies, a2 is the slope of the power law
at low frequencies and fp1 and fn2 are the frequencies of the two bends. This equation assumes
the slope of the power law at intermediate frequencies is zero (white noise). This spectral model
provides a strong statistical fit to the power spectra generated from the physical rice pile (Figure
S4.2).

To quantify signal detectability, the 95% confidence band generated from the DBPL model
was applied to the power spectra of the efflux. The ratio between the power of the signal spike
and the power of the 95% confidence band at the imposed periodicity was quantified: if this

ratio exceeds 1, a signal is considered statistically detectable.
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To quantify the amount of apparent degradation a signal experiences due to incompleteness,
we stack the efflux time series into lengths equal to the input period, and take the mean of the
efflux for each second over the imposed periodicity. From this, we gain a mean ensemble efflux
to which we fit a sine wave with a period equal to the known input, and are returned an
amplitude and phase based on the signal present in the mean ensemble efflux. We compare the
amplitude of the signal evident in the ensemble efflux, to that of the known input signal and

quantify a percentage similarity (Griffin et al., 2023)

Data is removed from the time series randomly, hence the detectability and apparent
degradation of a sinusoidal sediment flux signal is dependent on the exact data points removed.
Whilst two time series may have the same completeness, different parts of a sinusoidal signal
may be removed each time which influences signal degradation and detectability. To quantify
a representative detectability and apparent degradation for each incompleteness interval, the
time series was degraded randomly 5 times and an average detectability and apparent
degradation was quantified. 5 iterations are the minimum number required to stabilize the

trends seen in Figures 4.4 and 4.5.

4.3. Results

4.3.1. Incompleteness on the structure of autogenic processes

Firstly, we quantify the temporal structure of autogenic processes evident within stratigraphy
using a time series containing temporal gaps of varying duration (Figure 4.2). This provides
understanding of how incompleteness alone influences the spectral structure of autogenic
processes. When power spectra are generated from a time series which is between 100% and
35% complete, all three noise regimes (red, white and blue noise) are present. As completeness
decreases beyond 50% the temporal range of the red noise regime is gradually reduced, as short
time scales are progressively removed from the power spectra; this is indicated by Trw moving
progressively to the left as completeness decreases (Figure 4.2A). In contrast, the timescales
over which blue noise persists are consistently present. As completeness decreases, the gradient
of spectral growth (red noise) and spectral decay (blue noise) both decrease at a linear rate,
meaning the structure of these noise regimes becomes increasingly difficult to distinguish.
When completeness is reduced to 50%, the structure of blue noise is lost, rendering the power
spectra to white noise over all timescales greater than Trw. This is indicated by Tws disappearing

as completeness decreases below 50% (Figure 4.2A). As completeness is reduced to below
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35%, short timescales continue to be removed from the power spectra; at 15% complete, all

timescales less than Ty are removed, rendering the power spectra to solely white noise.

Secondly, we quantify the structure of these processes evident within an incomplete time series
where the temporal gaps have been removed through interpolation using the assumption of
linear sedimentation rate. This is analogous to a time series of stratigraphic information (Figure
4.3). When the time series is between 100% and 35% complete, all three noise regimes (red,
white and blue noise) are present within the power spectra. The timescales over which both red
noise and blue noise persist are consistently present. Although the structure of the red noise
regime remains easily distinguishable with decreasing completeness, identifying blue noise is
difficult when completeness is reduced to 50% as the gradient of spectral decay (blue noise)
decreases. When completeness is below 50%, the structure of blue noise is lost, rendering the
time series to white noise over all timescales greater than Tn. This is indicated by Tws
disappearing as completeness decreases below 50% (Figure 4.3A). As completeness is reduced
to below 35%, Trw gradually increases from 30 seconds to more than 1000 seconds, as high-
frequency noise is added to the time series via interpolation. This is indicated by Trw moving

progressively to the right as completeness decreases (Figure 4.3A).
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Figure 4.2: The temporal structure of autogenic processes evident from a time series containing temporal gaps of varying duration

(a). Power spectra generated from a time series of efflux from the control experiment (influx rate of 0.37 g s™), where time has been systematically removed in
approximately 10% intervals as a proxy for stratigraphic incompleteness. The full spectrum is shown in black, with the mean spectra shown in red. The vertical
dashed lines denote the autogenic timescales, T (red) and Twy, (blue). The percentages in the bottom right corner of each panel denote the percentage completeness
(C). The time series utilised is non-linear, to resemble the record of autogenic processes in stratigraphy that could be reproduced if the ages of all sediment were
known. Due to the temporal gaps within the time series, power spectra have been generated using the Lomb-Scargle periodogram. (b) Variations in the spectral

gradient (see Figure 4.1) of the red noise regime (top) and the blue noise regime (bottom) as a function of completeness.
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Figure 4.3: The temporal structure of autogenic processes is evident from a time series where the
temporal gaps have been removed through interpolation using the assumption of linear
sedimentation rate

(a) Power spectra generated from a time series of efflux from the control experiment (influx rate of 0.37
g s™), where time has been systematically removed in approximately 10% intervals as a proxy for
stratigraphic incompleteness. The vertical dashed lines denote the autogenic timescales, T (red) and
Two (blue). The percentages in the bottom right corner of each panel refer to the completeness (C) of
the time series. The time series has been interpolated onto a regular time interval to resemble a time
series produced from stratigraphic measurables where a linear sedimentation rate is assumed. Power
spectra have been generated using the multi-taper method (MTM) with 2 tapers. (b) Variations in the
spectral gradient of the red noise regime (left) and the blue noise regime (right) as a function of

completeness. (c) Variations in Tn, as a function of completeness.

4.3.2. Incompleteness on the detectability of environmental signals

Firstly, we quantify signal detectability from a time series containing temporal gaps of varying
duration (Figure 4.4), which provides insight into how incompleteness alone influences signal

preservation. Signals with periodicity less than Tny are undetectable over all amplitudes within
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a complete time series due to signal shredding and are therefore undetectable over all
amplitudes within a time series which is incomplete to any degree (Griffin et al. 2023). High
amplitude signals (100% of the mean feed rate) with periodicity between Tn and Twp are
detectable within a complete time series. As completeness decreases, signal detectability also
decreases, but high amplitude signals over these periodicities remain detectable within a time
series over all levels of completeness (Figure 4.4). As the amplitude of these influx signals are
reduced, signal detectability decreases and medium amplitude signals (50% of the mean feed
rate) with periodicity between Tnw and Tws can be rendered undetectable in a time series with
low completeness. Low amplitude input signals (25% of the mean feed rate) with periodicity
between Trw and Tws are undetectable within a complete time series as they are obscured by
autogenic noise (Griffin et al. 2023), hence these signals are undetectable within a time series
which is incomplete to any degree (Figure 4.4). Long period signals with periodicity greater
than Tws show enhanced detectability (Griffin et al. 2023), hence high amplitude, long period

influx signals remain highly detectable within time series over all levels of completeness.
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Figure 4.4: Signal detectability from a time series containing temporal gaps of varying duration

The combined effects of signal periodicity, amplitude and stratigraphic completeness on signal

detectability. Signal amplitude decreases in 25% intervals.

Secondly, we quantify the detectability of signals from a time series where the temporal gaps
have been removed through interpolation using the assumption of linear sedimentation rate.
This is analogous to a time series of stratigraphic information (Figure 4.5). Overall, a divide in
signal detectability is evident when completeness is approximately 50%. This is intuitive, as
approximately half the time series, and hence the influx signal, is removed and replaced with
high-frequency noise. Signals with periodicity less than T, are undetectable over all
amplitudes within a complete time series due to signal shredding by autogenic processes and
are therefore undetectable over all amplitudes within a time series which is incomplete to any
degree (Griffin et al. 2023) (Figure 4.5). High amplitude sign