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INTRODUCTION 
 Biomechanical phenomena such as aging of the bone, 
osteoporosis, and bone loss in microgravity affect bone strength by 
changing its structural geometry. Therefore, the investigation of the 
individual effects of structural and geometrical parameters on the bone 
strength can lead to a better understanding of the mechanisms and risk 
factors associated with a specific bone disease. In this study, we 
introduce a computational model that allows its parameters to be 
systematically varied in ways that are observed in aging, spaceflight or 
with other structural perturbations. The input data to the model can 
come from Computed Tomography (CT) or APL’s newly developed 
three- dimensional Dual Energy X-Ray Absorptiometry (DEXA) 
scanner. 
 Three-dimensional finite element (FE) analysis is the only 
available technique that accounts for the complexity of the hip 
geometry and its material distribution. A major challenge for applying 
FE models is the generation of quality meshes for patient-specific data 
acquired from imaging modalities. Two common approaches for FE 
mesh generation are: 1) Direct generation of FE models from CT data 
(voxel-based methods) [1].  2) Generation of FE models from the solid 
/ surface models of the femur (the solid or surface model is usually 
developed by extracting inner and outer contours and reconstructing 
the surface geometry from the CT scans [2]). The former approach is 
automated but usually produces unrealistic jagged and non-smooth 
geometry. The latter approach produces a smooth geometry but is 
labor intensive. Depending on the application, reasonable accuracy has 
been reported for both approaches [3]. Because these approaches were 
mainly created for CT data, they may not be directly applicable to 
other imaging modalities such as DEXA. Also, since these FE models 
were not created by parameterization of the femur, they may not 
directly lend themselves to a sensitivity analysis of the femur’s 
structural and geometrical factors. 
 The objective of this work was to develop a semi-automatic 
parametric technique for creating FE models of the femur. The 
technique can be applied to both CT and DEXA data (a 3D DEXA 
scanner is currently under development at APL).  Similar to the 

geometry-based techniques, our FE mesh creates a smooth surface 
geometry.  Our approach develops a mechanically-equivalent bone by 
preserving the cross-sectional mass and moment of inertia of the 
original geometry.  
 
METHODS 
 A proximal femur of an average male cadaver was scanned using 
a CT scanner.  Semi-automatic custom algorithms were applied to 
extract the bone’s outer contours and density information from the CT 
data. An elliptical fit was applied to parameterize the outer contours. 
The inner contour ellipses were calculated such that the constraint 
equations for cross-sectional mass and moment of inertia along 
femoral shaft and neck axes were satisfied.  Structural analysis of the 
bone was performed using I-DEAS software. The following is the 
three steps required for developing a parametric FE model:  
 
Semi-automatic extraction of the femur geometry and 
density data 
 The first step toward the development of a finite element model 
of the femur was to extract the density maps and bone surface 
geometry from medical image data (CT scans in this case). We 
adapted the technique of extracting bone density data from a proximal 
femur, based on the work of Oden et al. [4]. 
 We scanned a proximal femur of an average male using 
computed tomography (CT).  Our algorithm cropped the CT images to 
include only the proximal femur. The gray scale and density values 
were calibrated using a phantom. The horizontal slices were rotated 
such that the shaft axis was positioned vertically when looking at the 
longitudinal (vertical) slices of the femur.  Next, the algorithm re-
sliced images along the axis of the shaft and neck of the femur (the 
transition from shaft axis to neck axis was defined by a hyperbolic fit).  
Edge extractions were performed for the outer boundaries of the femur 
using the re-sliced sections along the femur’s neck and shaft axes.  The 
outer boundaries were parameterized by applying non-linear least-
square fit of an elliptical equation.   
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Calculation of the inner boundary of the bone 
  In order to create a mechanically-equivalent parametric model of 
the femur, the moment of inertia and the mass of the bone and the 
model must be equal for each cross-section of the bone.  We calculated 
the cortical/cancellous and cortical/marrow boundary such that the 
cross-sectional moment of inertia (CSMI) and cross-sectional area 
(CSA) of the model and the original bone remained equal (note that 
both are calculated from the mass of the cross-section based on one 
voxel thickness).  We used the density map data for each cross-section 
plus the CSMI and CSA equations to calculate the appropriate 
elliptical fit for the cortical/cancellous or cortical/marrow boundaries. 
This enabled us to define the bone geometry and its material 
distribution with a finite number of control points for each cross-
section. Thus, a full parametric model of the femur was created.  
 The algorithm accounted for the cortical thickness variations 
within a cross-section of the bone by allowing eccentric inner contours 
with respect to their corresponding outer contours.  The coordinates of 
the center of inner ellipses, xi, was found by manipulating the 
equations for the first moment of inertia as follows: 
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 Figure 2A shows the stress distribution in the proximal femur of a 
healthy normal male. For this simulation we applied Kinematic 

art of the shaft.  A single distributed 
applied to the superior surface of the 

femoral head. As shown in Figure 2B, we reduced the angle of the 
neck axis with respect to the longitudinal axis of the shaft by 
increasing the angle between adjacent planes in the region that 
included the greater trochanter, with an accumulated total increase of 
15 degrees.  The simulations showed that with the neck angle 
reduction, the maximum stress remained at the inferior root 
neck with a 9% reduction in magnitude.  However, the stress at the 

of the 

superior root increased by approximately 85% of its original 
magnitude. Since the fracture strength of bone is significantly lower in 
tension than compression, this demonstrates a potential mechanism for 
a transition from compression to tension fractures.  

Where xo is the coordinates of the outer ellipse, xcg is the coordinates of 
the centorid of the density map, Ao is the area under the outer elliptical 
ellipse, and Ai  is the area under the inner ellipse.  
the centorid of the density map, Ao is the area under the outer elliptical 
ellipse, and Ai  is the area under the inner ellipse.  
 The tissue porosity, µ, for the trabecular  volume enclosed by the 
cortex varies with each cross-section.  The value of the trabecular 
porosity was defined and adjusted for each cross-section using the 
following equation:   

 The tissue porosity, µ, for the trabecular  volume enclosed by the 
cortex varies with each cross-section.  The value of the trabecular 
porosity was defined and adjusted for each cross-section using the 
following equation:   
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Where N is the number of pixels in the inner cortex, dj is the density 
value for each pixel, and ρ is the average tissue density from CT. 
 
Automatic generation of the finite element brick mesh 
 Our programs generated macros for I-DEAS software (also 
known as program files) that automatically generated 20-node brick 
elements for the cortical, cancellous, and marrow volumes.  The 
volume inside the inner cortex was then filled with a brick element 
mesh representing cancellous bone and marrow. The cortical shell 
included two layers of brick elements.  We assumed a modulus of 
elasticity of 17 GPa for cortical bone and 1.5 GPa for the cancellous 
bone (the latter can be adjusted to accommodate changing trabecular 
porosity).  Poisson’s ratio for bone tissue was taken as 0.33. 
 
SIMULATION EXAMPLES 
  
Defining bone loss in spinal cord injury patients 
 Progressive bone loss occurs in tetraplegic and paraplegic spinal 
cord injury (SCI) patients, is not prevented by rehabilitation therapy 
and is believed to simulate bone loss in space-flight. We modeled the 
changes in bone structure and stress distribution for the single stance 
configuration using the data from SCI patients at 0, 6, and 12 months.  
We demonstrated a progressive increase of the bone maximum stress 
in SCI patients during the study period. Figure 1 shows a typical finite 

element simulation of an SCI patient for data collected at 0 and 6 
months. Simulation was performed with a distributed pressure of 2 
MPa applied to the femoral head, simulating the single stance phase.  
The simulation showed a 30% increase in the femur’s maximum stress 
(from 13.9 to 19.7 MPa) at the femoral neck due to the loss of bone 
mass during the 6-month period.    
 
 
 
 
 
 
 
 
Figure 1: Finite element analysis of the proximal femur of a 

SCI patient.  von Mises stress distribution is calculated 
from CT A) at 0 month, and B) after 6 months  

 
Effects of geometry on the strength of femoral neck 

 

 
 
 
 

 
 

Figure 2: von Mises stress of the proximal femur of A) a 
healthy male B) when neck angle is changed 15o   
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