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INTRODUCTION

In our investigation of the properties of DNA-crosslinked
polyacrylamide gels [1], there is a need to measure the elastic moduli
of small (25 pl) samples of material. A static, nondestructive method
that eliminates much of the material preparation and handling issues
associated with traditional compressive tests has been developed.

METHOD

In the method, a rigid magnetic sphere is first embedded in the
gel sample. An electromagnet is used to apply a force of known
magnitude to the sphere, and the resulting deflection is measured after
allowing for stress-relaxation to occur. The elastic modulus is
determined from the force and displacement using the theory of linear
elasticity [2]. The test fixture is shown in Figure 1a.

THEORY

Cylindrical coordinates (r, 6, z) are suitable for this problem of a
rigid sphere embedded in an elastic medium of either infinite size or
finite spherical volume (Figure 1b). In describing the geometry of the
rigid sphere of radius Ry, the radial spherical coordinate R is used.
With the force applied in the z-direction, axial symmetry dictates that
only radial and z displacements (u, and w, respectively) are possible.
Likewise, the only nonzero stresses expressed in common engineering
notation are o,, 0y O, and 7.

Case 1: Infinite Medium Approximation

The general solution to the irrotational deformation of an
axisymmetric body can be obtained as a superposition of two strain
fields, one generated from a harmonic strain potential, the other from a
biharmonic displacement potential [2]. Using spherical harmonics to
generate the potentials yields one such solution expressed by the

displacement field:
R
u, = A’i (1— ;J )
2GR R

(2) Bell Laboratoreis
Lucent Technologies
Murray Hill, NJ

0.5 mi Centrifuge' Tube Containing 26 pl of (b)
Gel Embedded wi ¢0.79 mm Steel Ball

Figure 1. (a) Photograph of test fixture. (b) Rigid sphere
embedded in a spherical medium of radius Ry and acted on
by a force F.
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In the displacement field, A is a constant to be determined from the
boundary conditions, G is the shear modulus of the medium, and v is
Poisson’s ratio of the medium. The boundary conditions preclude the
existence of radial displacements on the surface of the sphere and limit
the z-displacement to a constant value, 8. This gives:
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The stresses follow from the kinematic and stress-strain relations.
Integrating the components acting in the z-direction over the surface of
the sphere yields the net vertical force, or the applied force F:
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For an incompressible material, the elastic modulus is:
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Case 2: Finite Spherical Medium

For a spherical medium of radius R, the solution can be obtained
from the strain fields generated from the following set of harmonic (G)
and biharmonic () potentials:
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The additional boundary condition that all displacements vanish at R =
R; must then be imposed to determine the constants A; through As.
Proceeding as in the infinite medium case, the stresses in the z-
direction can be obtained from the displacement field and then
integrated to obtain the force. For incompressible media:
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The variable n = R;/R, represents the size of the medium in relation to
the embedded sphere. The error incurred by assuming an infinite
medium can be expressed by the ratio of the elastic moduli:
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RESULTS AND DISCUSSION

Appropriateness of using the infinite medium approximation in
determining the elastic modulus of the medium is dependent on the
size of the medium in relation to the size of the sphere, as shown by
Equation (12) and plotted in Figure 2. The error is approximately 25%
at a relative size of n = 11, and decreases to 5% at n = 47.

The spherical medium is an idealized geometry chosen for the
sake of simplicity. Most gel samples are held in containers that result
in the presence a free boundary surface. Such conditions obviously
become important as the size of the medium approaches that of the
sphere. It is possible to determine the correction factor by modifying
the elasticity problem to incorporate unique boundary conditions,
including the case of slip between the sphere and the medium.
However, if a second method of measuring stiffness (e.g. direct
compression of a cylindrical sample) can be employed, the correction
factor can be empirically derived.

In the DNA-crosslinked gels contained in conical, open-top vials,
direct compression tests yielded a correction factor of 1.03. Figure 3
presents the elastic modulus as a function of relative crosslink density,
where 100% crosslinking defines the maximum number of crosslinks
permitted by the amount of DNA functional groups in the
polyacrylamide chains [1]. The low stiffness of the gels is attributed
to low concentrations of both monomer (3 mg per 100 ml of gel) and
crosslinker (stoichiometrically equivalent to 0.28% by weight of the
standard crosslinker bis-acrylamide). Based on the composition of
bis-crosslinked gels, the monomer concentration can be increased at
least ten-fold and the crosslink density by at least twenty-fold.

Equation 7 indicates that the value of Poisson’s ratio does not
significantly affect the value of the elastic modulus. Compared to the
case of incompressibility, an illogical assumption of v = 0 reduces the
elastic modulus by approximately 17%. Since typical values for the
Poisson’s ratio of elastomers are between 0.49 and 0.499 [3], the error
associated with the assumption of incompressibility is negligible.

Particularly for thermoreversible gels, this method allows
repeated testing of small samples. The sample is heated above its

melting point, and a magnetic bead is positioned at the center of the
gel. Upon gelation, the sample can be tested at various loads. A
number of methods can be used to accurately measure the
displacement of the sphere. At the completion of testing, the sphere
can be removed, and the sample reused.

SUMMARY

A method has been devised that offers several advantages over
traditional means of measuring the elastic moduli of soft materials.
This method, based on the theory of linear elasticity, permits small
samples to be tested without damage. Furthermore, sample
preparation and handling can be greatly simplified.
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Figure 2. Ratio of elastic moduli as a function of the
relative size of the medium.
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Figure 4. Elastic modulus of the DNA-crosslinked gel as a
function of crosslink density.
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