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INTRODUCTION 
    For over fifty years the theory of viscoelasticity has played a major 
role in modeling brain injuries. The main premise of this approach is 
that the brain is injured when the strain field, created in the brain tissue 
by shear waves, assumes sufficiently high values. In particular, the 
linear Voigt PDE system describing the motion of shear waves in 
viscoelastic solids has been successfully used in modeling closed head 
injuries such as hematomas [1] or diffuse axonal injuries (DAI) [2]. 
    Whereas it is generally accepted that a 50% stretching of neurons 
can cause hematomas [3], the exact mechanism of DAI is unclear. The 
prevailing theory is that a 20%-30% stretching of a neuron’s 
membrane leads to a chemical ‘poisoning’ that causes neuronal death 
around twelve hours after the accident [4]. Mechanically, neurons 
might be able to ‘survive’ even 80% stretching [5]. 
    However, the basic deficiency of the linear Voigt model, as well as 
other models known to us, is that they cannot explain the following 
three key features of DAI [4,6]: 
  1. The highly localized character of the damage − some neurons 

are affected while close neighbors are not; 
  2. These ‘point-wise’ injuries of neurons are scattered over large 

regions, principally in the white matter; 
  3. The injuries are concentrated at the white-matter/ventricle and 

gray-matter/white-matter boundary. 
From a mathematical point of view, it is rather impossible to model 
such features without considering the fluid (nonlinear) aspect of the 
brain tissue, which consists of 80% of water. One recent, nonlinear 
model attempts to do so by treating the brain tissue as a viscoelastic, 
porous, solid structure permeated with water-like fluid [7]. 
 
NONLINEAR, FLUID MODEL OF CLOSED HEAD INJURIES 
    In our approach to modeling CHI, we have used the viscoelastic 
Voigt model as a starting point and incorporated the fluid aspect of the 
brain tissue by replacing the linear partial temporal derivative in the 
Voigt PDE system with the corresponding nonlinear material 
derivative. Specifically, we have introduced the following system of 
PDEs to describe the motion within the brain in traumatic situations: 
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Here ∇⋅+∂∂≡ vtDtD //  is the material derivative with v(x,t) being 
the velocity vector, u(x,t) is the Lagrangian displacement vector of a 
material parcel labeled by its initial position x0, φ denotes a scalar 
potential composed of density-normalized pressure and hydrostatic 
compression, c is the velocity of shear waves, and ν is the kinematic 
viscosity coefficient. In other words, we have augmented the standard 
Navier-Stokes PDEs for incompressible fluids with an additional 
forcing proportional to the Lagrangian integrals of the flow velocity. 
This amounts to treating the brain tissue as a non-Newtonian fluid. 
    Our postulate of introducing the nonlinear material derivative to 
link the velocity v and the displacement u enables the fluidity of brain 
tissue while retaining its elastic-solid tendency to return to its initial 
form once the deforming force is eliminated. Indeed, integrating the 
velocity of a material parcel along its trajectory to find its 
displacement allows the parcel to ‘remember’ where it came from. 
    To account for free boundaries between various brain structures, in 
particular between the white matter and the ventricles, we treat c and 
ν as material constants, i.e., we assume they satisfy: 

.0/,0/ == DtDvDtDc                                (2) 
The finite-difference method we have used to solve (1) and (2) is 
rooted in computational studies of stratified, rotating fluids in the 
research area of atmospheric dynamics. More precisely, we adapted 
the fluid code EULAG developed by Dr. P. Smolarkiewicz at the 
National Center for Atmospheric Research in Boulder, CO [8].  
    Our previous numerical simulations (see [9-11] and references 
herein) showed that when a rapid head rotation leads to a material 
velocity of the brain tissue that is higher than the velocity of shear 
waves in the tissue, large and highly localized maxima of strain can 
appear due to nonlinear phenomena such as the steepening of wave 
fronts. We also showed that since the gray matter shear modulus is 
greater than the white matter shear modulus [12,13], ‘harmless’ shear 
waves in the gray matter can still induce these nonlinear phenomena 
in the white matter, leading to DAI at the gray/white-matter boundary. 
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DIFFUSE AXONAL INJURIES NEAR VENTRICLES 
    Since the cerebral fluid does not support shear waves, ventricles 
with their free boundaries should mitigate brain injuries rather than 
cause them by playing the role of energy absorbers. In fact, a 
significant strain reduction in the white matter near the ventricle has 
recently been observed due explicitly to the free boundary motion 
[14]. Nevertheless, we hypothesized that ventricles can also transfer or 
reflect energy of shear waves in a similar way as is done by the liquid 
core of the Earth during earthquakes. Consequently, a highly localized 
accumulation of energy could appear, leading to DAI. 
    To verify our hypothesis, we tested dynamic responses of brain 
material during simulated rotations of idealized 2-D cross-sections of 
the brain. In particular, we mimicked a rotation of an ellipse (with the 
half-axes equal to 0.1m and 0.075m) containing a 10% layer of the 
gray matter and a 90% layer of the white matter. A small sub-region 
(representing an idealized cross-section of a lateral ventricle) was 
filled with cerebral fluid. To model the flow in the ventricle, we used 
the standard Navier-Stokes equations, i.e., we set c=0 in (1). 
    Fig. 1 depicts the case where the ellipse is impulsively rotated for 
0.05s with a tangential velocity of 0.8m/s so that the material velocity 
induced in the brain tissue is smaller than the 0.9m/s velocity of the 
‘white’ shear waves and the 1.8m/s velocity of the ‘gray’ waves [12]. 
The graph shows the values of the operator norm N of the symmetric 
part of the displacement’s Jacoby matrix du/dx, evaluated relative to 
the rotation of the ellipse at t=0.1s, i.e., the ‘effective’ values of the 
strain. The high values of N in the ventricle indicate that the energy of 
‘harmless’ shear waves induced in the white matter has been 
transferred through the boundary, leading to a turbulent flow there. 

 
Fig. 1. Strain norm in the brain tissue and the ventricle. 

 
Fig. 2. Strain norm outside the ventricle. 

    Fig. 2 presents results of the same simulation with the values of N 
set to zero inside the ventricle. This enables us to show that the 
turbulent flow in the ventricle induces ‘harmful’ shear waves in the 
neighboring white matter, and that these waves continue to spread 
after the rotation stops. Indeed, 0.05s after the rotation stops, the 
highly localized maximum of N in the white matter is sufficiently 
large to stretch neurons by 90% and, consequently, to cause DAI. 
    Assuming that boundaries are rigid, i.e., eliminating (2) does not 
change the basic features of this specific solution but leads to larger 
values of N − especially in the ventricle. The results indicate that our 
nonlinear fluid viscoelastic model is capable of replicating the three 
key features of DAI listed above and provides a reasonable 
explanation of why DAI occur predominantly in the white matter at 
the white-matter/ventricle and white-matter/gray-matter boundaries. 
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