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ABSTRACT 
 Using measured flow parameters, vessel dimensions and blood 
viscosity, this study presents flow, pressure, and displacement 
computation and validation in a mildly tapered compliant femoral 
artery of a living dog.  This analysis compares the results of a rigid 
wall and an elastic wall with experimental data.  The compliant wall 
model is more in agreement with the experimental data, particularly 
during the systolic phase of the pulse cycle, than the rigid wall results. 
  
 

 
 

Figure 1:  X-ray tracing of portion of the femoral artery of a 
living dog.  Ligated small branch arteries are marked port 

No. 1 and 2. 
 
 
INTRODUCTION 
  The arterial wall is complex, being anisotropic (elastin, collagen, 
smooth muscle), viscoelastic (creep, stress relaxation, hysteresis), and 
under a mean and fluctuating state of three-dimensional stresses, it is 
very difficult to specify its dynamic behavior with certainty in 
computational methods.  Further, there are concerns about the 
reliability of in vivo measurements, and the appropriateness of the 
method of flow computation with regard to the non-Newtonian 
viscosity of blood, wall and inlet boundary conditions, and handling of 
the nonlinear convective acceleration terms and coupling of the 
pressure and velocity fields during the cardiac cycle.  Thus, such a 
combined experimental-calculation approach is not straightforward.    

 Details of the finite element method (FEM) [1] for a rigid wall 
were given by Banerjee et al. [2, 3].  The flow simulations were 
carried out by solving the mass and momentum equations for pulsatile 
laminar blood flow using a Galarkin FEM.  The Carreau model was 
used for shear rate dependent viscosity of blood with local shear rate 
calculated from the velocity gradient through the second invariant of 
the rate of strain tensor [4]. There is relatively unimportant elastic and 
time relaxation effects, which is believed to be a reasonable 
approximation for blood flow through arteries of the size of the 
femoral in a dog.   
 
METHODS 
 A tracing of the X-ray of a portion of the femoral artery of a dog 
where the measurements were made previously at USC School of 
Medicine is shown in Fig. 1.  The pressure drop across the segment is 
measured by using two small branch arteries, which are ligated and 
connected by tubing to a Validyne transducer. The cuff for the 
Doppler flow meter is located near the first branch as shown in Fig. 1.  
The vessel segment (Fig. 1) is simplified and kept to be relatively 
straight with mild taper.  The vessel diameter at the first branch tap is 
d1 = 3.8 mm, and at the second branch tap is d2 = 3.6 mm.  The axial 
distance between the branch pressure taps is 52 mm.   
 The mathematical modeling of compliant wall (with finite 
thickness) problems, which needs fluid-wall-interaction capabilities 
[5], requires the concurrent application of techniques from 
Computational Fluid Dynamics (CFD), Computational Solid 
Dynamics (CSD) and Computational Mesh Dynamics (CMD) fields. 
In the solution strategy adopted, all the three steps are performed 
sequentially. 
 The CFD step consists the solution of the flow problem on a 
given mesh. The exchange of information with the CSD problem 
happens at the fluid-wall interface.  In unsteady flow problems, the 
velocities at the interface are computed as part of the CSD step and 
applied as boundary conditions for the N.S. equations.  The exchange 
of information with the CMD step is done via the repositioning of the 
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nodes of the fluid domain, after each update of the configuration of the 
structure. 
 For the solution of the CFD step, fluid-wall-interaction problems 
are typically moving boundary problems with prescribed (or zero) 
boundary conditions at the interface.  Moving boundary problems are 
addressed with the Arbitrary Lagrangian Eulerian (ALE) formulation.  
In unsteady simulations, the advection term is modified via the so-
called mesh velocity.  Accordingly, for an incompressible flow, the 
ALE Navier Stokes equations are: 
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The loads needed for coupling with the structural problem are 
computed with a consistent residual formulation. They have exactly 
the same discretization error. 
 The CSD step solves the momentum equations (cast in terms of 
displacements) in the parts of the domain that are declared as 
deformable arterial wall. The CSD step exchanges information with 
the CFD and CMD step at the fluid-wall interface nodes. Loads are 
received from the CFD step and velocity boundary conditions are 
returned to the N.S. Equations. The displacements, solution of the 
CSD problem, are used as boundary conditions for an elastostatic type 
problem, which adjusts the nodes in the interior of the domain.  The 
structural domain of the fluid-wall-interaction problem is described by 
the elastostatic equations: 
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At each time t, equations 3 and 4 represent the balance between inertia 
forces, stress tensor and applied forces inside the body and the balance 
between the stress tensor and the applied stress on the external 
boundaries, respectively. 
 The equilibrium conditions must be complemented by the 
constitutive equation, which links stress and strain. 
     (5) klijklij D εσ =
The equilibrium equations are usually solved via a Lagrangian 
formulation. The Total Lagrangian (TL) formulation uses the initial 
configuration as reference configuration, while the Updated  
Lagrangian (UL) uses the most recent configuration. Both 
formulations involve the use of appropriate stress and strain measures. 
For the case of large deformations but small strains the constitutive 
equations are very similar to the ones used for small deformations. 
  
RESULTS AND DISCUSSION 
 Computations were carried out consistent with the calibrated 
Doppler flow meter.  The flow signal was tri-phasic with a brief period 
of reverse flow during the early part of diastole [3].  Using a digital 
voltmeter, the time-averaged blood flow velocity, ua = 15.1 cm/sec, 
and the time averaged pressure drop ∆pa  = -0.59 mmHg were 
obtained.  The resting heart rate was 128 beats/min, the period T of a 
heartbeat was 0.47 sec.  Measurement of the viscosity of the dog’s 
blood at in-vivo temperature gives η =0.037 poise, and the measured 
blood density, ρ, was 1.04 gm/cm3.  Details of computational results 
for a rigid wall were given by Banerjee et al. [3] and thus are not 
repeated here.   
 Figure 2 shows the comparison of temporal variation of pressure 
drop between port No. 1 and port No. 2 for experimental 
measurements along with the rigid and the compliant wall 
computational models.  In general,  the trend and the magnitude of 

pressure drop between experimental & compliant wall computations 
during systole and diastole showed better agreement as compared to 
near rigid wall computation.  At peak systole, the pressure drop for 
compliant wall was within 15% of the experimental measurement 
whereas a similar comparison during peak diastole was within 34%.  
More importantly, the phase difference during systole for both 
experimental and the compliant wall computation model showed 
excellent agreement as compared to the rigid wall computation model.  
However during diastole, the phase difference for both the rigid and 
the compliant wall computations remain out of phase when compared 
with experimental data.  Thus, the compliant wall model is more in 
agreement with the experimental data, particularly during the systolic 
phase of the pulse cycle, than the rigid wall results. 
 Arterial wall movement shows that the radial displacement of the 
wall follows the velocity and pressure pulse.  Peak radial displacement 
is calculated to be 0.0047 cm whereas the average radial displacement 
is about 0.0037 cm.  Compliant wall model shows that at port 1 there 
is about 0.5% displacement during the peak systole. 
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Figure 2:  Comparison of temporal variation of pressure 
drop between port No. 1 and port No. 2 for experimental 

measurement with the rigid and the compliant wall 
computation models. 
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