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 In the first step, we developed a three-dimensional, cubic lattice 
network model with the dimensions LxLxL (L=15), based on the 
methods described in [6], which simulates the properties of the matrix 
microporosity. Two different bond diameters, representing the pores 
between the apatite crystals and the collagen fibers, respectively, were 
distributed randomly with defined probabilities across the network, 
whereby the overall porosity of the matrix is maintained. Next, 
osteocytes were distributed randomly across the nodes of the network. 
For every osteocyte, the distance to the neighboring osteocytes was 
determined. If the distance was smaller than a predefined threshold 
value, the osteocytes were connected by a canaliculus. Finally, since 
the network represents a part of a bigger structure (i.e. the tissue), and 
is not an isolated entity, periodic boundary conditions were 
implemented for the microporosity bonds and the canaliculi (Fig. 1). 
 

 
 

 
Figure 1: (Left) Example of an osteocyte network with flow 
direction from top to bottom. The ‘loose ends’ visible on 

the right face of the cube represent the periodic boundary 
conditions. (Right) A planar cut through the network shows 
the matrix microporosity with a distribution of two different 

bond diameters.  
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 In the second step, the actual flow through the network was 
calculated. The driving force for this flow is a pressure gradient  
Dp=pin – pout between the upper and the lower surface of the network. 
Therefore, all nodes on these surfaces were assigned either pin  or pout . 
The flow rate through the bond between two nodes can be calculated 
as a function of the pressure gradient between the two nodes [5] 
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where d is the bond diameter, l the distance between two nodes, and µ 
is the fluid viscosity. The pressure at each node can be calculated by 
solving a system of linear equations for the flow balance at each node. 
When the pressure at each node is known, the flow through the entire 
network can be calculated, and by using Darcy’s law, the permeability 
of the network can be determined 
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 In order to demonstrate the effect of osteocyte density on tissue 
permeability, we applied published data quantifying the change in 
osteocyte density in trabecular bone of patients between 30 and 60 
years old [7]. 
 
RESULTS 
 The permeability was calculated as the mean value from the 
outcome of 20 calculations of the model for every osteocyte density. 
The results are shown in Fig. 2. Whereas the osteocyte density is 
assumed to be declining almost linearly [7], the loss in permeability 
has to be approximated with a power law (R2=0.98).  
 

Figure 2: The decline in osteocyte density (solid line, 
number of osteocyte per area) and its effect on bone tissue 

permeability (crosses and dashed line, permeability in 
percent of original permeability at 30 yrs.) 

  
 
 
DISCUSSION AND CONCLUSIONS 
 Using a stochastic network model to simulate interstitial fluid 
flow through the lacunocanalicular network and the matrix 
microporosity of bone, we were able to demonstrate the dramatic 

effect of declining osteocyte density on the tissue permeability. These 
data predict that a mere 5% decrease in osteocyte density between the 
ages of 30 and 40 years decreases bone permeability by almost 50%. It 
is expected that this would exert an enormous effect on tissue 
perfusion and cell survival, as well as on the transport of signalling 
molecules to and from the osteocytes. 
 In this study we used the example of a change in the osteocyte 
density to demonstrate the power of the method of network modeling. 
However, there are many more possible applications for this method. 
Based on the microscopic observations [1,2], a next step will be to 
determine the influence of osteocyte connectivity on tissue 
permeability. Osteocytes in close proximity to each other are typically 
connected by canaliculi that decrease in number with increasing 
distance from the blood supply as well as in the presence of bone 
disease. Furthermore, by taking into account the preferred spatial 
orientation of the lacunocanalicular network, it will be possible to 
detect anisotropic differences in the permeability of bone tissue, which 
will be important for the development of more accurate, continuum 
level finite element models. Finally, by excluding pores that are too 
small to allow the passage of a certain size molecule from the model, 
we will be able to simulate the molecular sieving properties of bone 
tissue. 
 In contrast to applications of network modeling in chemical 
engineering (e.g. [6]), validation of our physiologic bone models 
presents unique challenges. At the present, this approach is limited to 
qualitative comparison studies. Nevertheless, it shows the potential to 
become an important tool for the study of many aspects of molecular 
transport through bone. 
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