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INTRODUCTION 
 Innovative patient-specific models and simulations would be 
valuable for addressing problems in orthopedics and sports medicine, 
as well as for evaluating and enhancing corrective surgical procedures 
[1]. For example, a patient-specific dynamic model may be useful for 
planning intended surgical parameters and predicting the outcome of 
high tibial osteotomy (HTO). Development of an accurate inverse 
dynamic model is a significant first step toward creating a predictive 
patient-specific forward dynamic model. The precision of inverse 
dynamic analyses is fundamentally associated with the accuracy of 
kinematic model parameters such as segment lengths, joint positions, 
and joint orientations. 
 Understandably, a model constructed of rigid links within a 
multi-link chain [2] and simple mechanical approximations of joints 
[3] will not precisely match the human anatomy and kinematics. The 
model should provide the best possible assessment within the bounds 
of the joint models selected [3]. Earlier studies describe optimization 
methods to discover a set of model parameters for three-dimensional 
(3D), 2 degree-of-freedom (DOF) models by decreasing the error 
between the motion of the model and experimental data [3, 4]. In this 
paper, we present a nested, or two-level, system identification 
optimization approach to determine patient-specific joint parameters 
that best fit an 18 DOF lower-body model to movement data.  
 
METHODS 
 A generic, parametric 3D full-body kinematic model was 
constructed with Autolev as a 14 segment, 27 DOF linkage joined by a 
set of gimbal, universal, and pin joints. Comparable to Pandy’s [1] 
model structure, three translational and three rotational DOFs express 
the movement of the pelvis in 3D space and the remaining 13 
segments comprise four open chains branching from the pelvis 
segment. A static motion capture trial is used to create segment 
coordinate systems and define dynamic marker locations in these 
coordinate systems. A modified version of the Cleveland Clinic 
marker set is used for this purpose. The locations and orientations of 
the joints within the segment coordinate systems are described by 98 

patient-specific model parameters for the following joints: 3 DOF hip, 
1 DOF knee, 2 DOF ankle, 3 DOF back, 2 DOF shoulder, and 1 DOF 
elbow. The patient-specific parameters for each joint are defined in 
two adjacent body segments (Figure 1). For example, the knee joint 
axis is simultaneously established in the femur coordinate system and 
the tibia coordinate system.  
 

 
Figure 1. Schematic of a 1 DOF joint axis simultaneously 
defined in two adjacent body segments and the geometric 
constraints on the optimization of each of the 9 parameters. 
 
 Given dynamic motion capture data, the lower-level sub-
optimization (Figure 2, inner boxes) minimizes the 3D marker 
coordinate errors between the model and the movement data using a 
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nonlinear least squares algorithm that adjusts the DOFs of the model at 
each instance in time [2]. Initially, the algorithm is seeded with exact 
values for the pelvis DOFs, since the marker locations directly identify 
the position of the pelvis coordinate system, and all remaining DOFs 
are seeded with values equal to zero. Given the joint motion is 
continuous, each optimal DOF solution at a particular time instance is 
used as the algorithm’s seed for the subsequent time instance. 
 The upper-level global optimization minimizes the sum of the 
squares of the 3D marker coordinate errors computed by the lower-
level algorithm throughout every time instance, or the entire joint 
motion, by modifying the patient-specific model parameters. To 
manage computational requirements, the upper-level optimization 
employs a parallel version of the particle swarm algorithm operating 
on a 20-processor network cluster; therefore, each is separately seeded 
with a random set of initial patient-specific model parameter values. 
The number of patient-specific model parameters adjusted throughout 
each optimization are as follows: hip = 6 (all translations); knee = 9 (4 
rotations, 5 translations); and ankle = 12 (5 rotations, 7 translations). 
 

 
Figure 2. Two-level optimization technique minimizing the 
distance errors between kinematic model markers and 
marker trajectory data to determine functional joint axes. 
 
 To evaluate the ability of this two-level optimization approach 
(Figure 2) to calibrate the generic kinematic model to a particular 
patient, we generated synthetic movement data for the ankle, knee, and 
hip joints based on in vivo model parameters and movement data. We 
then evaluated the optimization’s ability to recover the original model 
parameters used when generating the synthetic motions. For each 
generated motion, the distal segment moved within the physiological 
range-of-motion and exercised each DOF for the joint. The resulting 
synthetic marker trajectories without noise were recorded. To simulate 
skin movement artifacts, a continuous numerical noise model of the 
form A sin (ωt + φ) was used and the equation variables were 
randomly generated within the following bounds: amplitude A (0 to 1 
cm); frequency ω (0 to 25 rad/s), and phase angle φ (0 to 2π) [5]. 
 

RESULTS 
 For synthetic motions without noise, each optimization precisely 
recovered the original marker trajectories and model parameters to 
within an arbitrarily tight convergence tolerance (i.e., 1e-12). For 
synthetic motions with noise, the ability of the two-level approach to 
determine the original marker trajectories and model parameters is 
summarized in Table 1. The mean marker distance errors are 
approximately 0.5 cm, which is of the same order of magnitude as the 
selected random continuous noise model. 
 

Synthetic Data      
With Noise

Mean Marker        
Distance Error (cm) 4.61e-01 + 1.81e-01 5.10e-01 + 1.95e-01 5.06e-01 + 1.88e-01

Mean Rotational 
Parameter Error (deg) 2.56e-01 + 8.20e-02 2.42e+00 + 1.03e+00

Mean Translational 
Parameter Error (cm) 1.74e-02 + 1.55e-02 8.90e-02 + 5.14e-02 3.45e-01 + 2.84e-01

Ankle

n/a

Hip Knee

Table 1. Results of two-level optimization for synthetic data 
with random continuous numerical noise to simulate skin 
movement artifacts with maximum amplitude of 1 cm. 
 
DISCUSSION 
 The main motivation for developing a 27 DOF patient-specific 
computational model and a two-level optimization method to enhance 
the lower-extremity portion is to predict the post-surgery peak knee 
adduction moment in HTO patients [6]. The accuracy of prospective 
dynamic optimizations made for a unique patient is determined in part 
by the fitness of the underlying kinematic model. If the current model 
cannot adequately reproduce experimental motion, the chosen joint 
models may be modified. The two-level optimization method 
satisfactorily reproduces patient-specific model parameters defining a 
3D lower-extremity model that is well suited to a particular patient. 
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