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INTRODUCTION
The mechanical function of articular cartilage is determined by its

high water content and the particular architecture of the collagen
network. This network consists of cross-linked fibrils that extend
perpendicular from the subchondral bone and curve gradually to a
course parallel to the articular surface in the superficial zone [1]. It is
thought that loss of the integrity of this collagen network is important
in cartilage pathologies. For instance, cartilage swelling, which is
proportional to the amount of collagen damage [2], is an early sign of
articular cartilage degeneration in osteoarthritis [3]. Hence, it is
hypothesised that for a mechanical analysis of functional changes
during pathologies, the specific architecture of the collagen network
must essentially be included. To test this hypothesis, a numerical
model which incorporates this architecture is needed. However, such
numerical models are not available at present.

The two aims of this paper are therefore 1) to present a
poroelastic finite element model for articular cartilage, which is the
first one to include a description of the arcade-like collagen fibril
network, and 2) to show the relevance of using such a model with
respect to fibril stresses in selective parts of the collagen network.

METHOD
The solid part of the biphasic cartilage model consists of a non-

fibrillar and a fibrillar part. The non-fibrillar matrix resembles all
cartilage contents except for the collagen fibrils. The fibrillar part,
resembling the collagen matrix, is subdivided into a primary and a
secondary fibril network. Primary fibrils run perpendicular to the
subchondral bone in the deep zone, split up into smaller fibrils in the
radial zone, and continue parallel to the articular surface in the
superficial zone (Figure 1). This results in an arcade-like structure [1],
with superficial fibrils running in all directions. The secondary fibrils
form a homogeneous 3D network throughout the cartilage.

Figure 1. Right: schematic representation of the arcade
model [1]. Left: Orientation of four primary collagen fibrils

as implemented in the finite element model.

The non-fibrillar solid matrix is linear elastic, with homogeneous
and strain-dependent permeability (k):
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where e represents the void ratio, defined as the fluid fraction divided
by the solid volume fraction. M is a positive constant.

In the fibrillar part, both primary and secondary fibrils only resist
tension and exhibit strain-dependent stiffness [4], according to
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where E0 and Eε are positive material constants, εf is the fibril strain, !y

represents the local fibril density and C is the fraction of primary to
secondary fibrils.
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The initial orientation of each fibril is given by 0v
&

. After

deformation, the new fibril vector ( newv
&

) is computed by
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where F  is the deformation gradient tensor. The logarithmic fibril

strain can then be computed as
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and the fibril stress equals

∫∫ ∂=∂= εσσ fff E .

Substitution of the equations which determine the strain-dependent
stiffness for the primary and secondary fibrils, results in the following
equations for the stress in the primary and secondary fibrils:
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The total stiffness matrix of the collagen network is then obtained by
summation of the fibril stiffness matrices of each fibril after rotation to
the local element coordinate system. Finally, the total solid stiffness
matrix is obtained by adding the anisotropic fibrillar stiffness matrix to
the isotropic non-fibrillar one.

RESULTS
Material parameters are partly derived from the literature [5] and

partly by fitting the model to unconfined compression and indentation
data from the literature [6] (Figure 2).

Figure 2: Axial reaction force, normalized to equilibrium, in
unconfined compression tests (left) and indentation tests

(right) along with the fibril-reinforced model curve fit.

The importance of taking the collagen network architecture into
account for the mechanical loading of the collagen fibrils is illustrated
by considering the stresses in the collagen fibrils during an indentation
test (Figure 3). It is found that primary fibrils at the same location in
the superficial zone experience different mechanical loading,
depending on their origin. In an indentation test, fibrils which curve
away from the indentor are strained, whereas fibrils bending towards
the center of the indentor are not strained. Hence, the former fibrils are
more stressed, and consequently more susceptible to damage.

Figure 3: Contour plots of the maximal fibril stresses for
fibrils bending away from the indentor (top) and towards

the indentor (bottom).

DISCUSSION
With a newly developed poroelastic fibril-reinforced finite

element model of articular cartilage that incorporates the arcade-like
architecture of the collagen network, stresses in collagen fibrils in
externally loaded articular cartilage are computed. It is found that
fibrils at the same location in the cartilage experience different
mechanical loads, depending on their orientation. This finding has
important clinical implications, as it indicates that particular parts of
the collagen network are more susceptible to damage than others, even
though they are located at the same position in the cartilage. Such
effects have not been published previously, and can only be studied
numerically if the collagen architecture is taken into account as has
been done in the present model. Hence, this model provides new
insights into the functioning of the specific architecture of the articular
cartilage collagen network. This contributes to understanding cartilage
adaptation and cartilage pathologies such as osteoarthritis.
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