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 INTRODUCTION
Two of the molecular components of the solid matrix of articular

cartilage, proteoglycan and collagen, appear to be predominantly
responsible for the functional mechanical properties of the tissue. In
vitro experiments have quantified the cellular metabolic response to
mechanical stimuli that leads to distinct rates of material deposition for
the proteoglycan and collagen constituents [1]. We have derived a
cartilage growth mixture model that allows the solid matrix
constituents to grow independently [2,3].  The model is capable of
describing the evolution of tissue geometry, composition, residual
stress field, and mechanical properties during growth and
degeneration. In this paper, we linearize the cartilage growth mixture
model for infinitesimal elastic and growth strains so that illustrative
boundary-value problems can be solved analytically. Specifically, we
use the linear cartilage growth mixture model to solve an equilibrium
growth boundary-value problem for a cylindrical cartilage specimen.

METHODS
Theory

The linear model equations were derived from the general
equations presented in [2,3] by assuming infinitesimal elastic and
growth strains and infinitesimal changes in fluid density and pore
pressure. Upon linearization, the infinitesimal strain tensors ep and ec

for the proteoglycan and collagen constituents are
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where ee
αand eg

α  are the constituent elastic and growth strain tensors

(superscript α=p,c,f denotes the proteoglycan, collagen, or fluid
constituent). The linearized continuity equations are
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where φα  is the constituent volume fraction (the subscript O denotes
the reference configuration), tr(.) is the trace operator, and nf is the
infinitesimal fluid density change. The growth continuity equations are
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where cα are mass growth functions (rate of mass deposition/current
mass). Two constraints are used whose validity was discussed in [3].
First, the proteoglycan and collagen constituents are assumed to be
bound to the extracellular matrix so that ep and ec are equal. Second,
intrinsic incompressibility is assumed. These constraints are
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where es is the solid matrix strain tensor. Due to these constraints,
there are Lagrange multiplier terms in the constituent stresses and
diffusive forces that reveal that the equations of equilibrium need to be

satisfied only for the solid matrix Ts  and the fluid stress Tf :

div divs fT 0 T 0= =, ,     (5)

where div(.) is the divergence operator and T T Ts p c= + .
The Equilibrium Boundary-Value Problem

The boundary-value problem models the axisymmetric growth of
an initially homogeneous cylindrical specimen (radius R, height H)
with traction-free boundary conditions. For the boundary-value
problems studied here, the fluid pore pressure vanishes throughout the
tissue. Axisymmetric growth tensors for the proteoglycan and collagen
constituents may be specified using cylindrical coordinates as
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α α, , ) are the radial, circumferential, and axial

components, (e e er z, , )θ are the basis vectors, and ⊗  is the dyadic

product. Two types of growth symmetries were studied: isotropic
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constitutive equations were assumed to be
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where ( , , , , , )λ µ η η ηc c c p c fΓ are material constants and T p
0  is the initial

proteoglycan stress ( T p c
0 = −Γ  in the reference configuration). The

collagen material constants may change with time as remodeling
occurs. The material constants were determined by generalizing a
procedure previously used to determine proteoglycan and collagen
materials constants using confined compression and tissue
composition data for a typical bovine specimen [4].
Solution of the Boundary-Value Problem

Since in vitro experiments have shown that mechanical loading
and growth factors may differentially regulate proteoglycan and
collagen synthesis [1], two cases (A and B) were considered that allow
for differential amounts of proteoglycan and collagen mass deposition.
To investigate the effects of the growth and remodeling parameters,
additional cases were studied:
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C: Isotropic growth ( tr trg
p

g
ce e> ) and collagen remodeling.

D: Planar growth ( tr trg
p

g
ce e> ).

E: Non-uniform planar growth ( tr trg
p

g
ce e> ).

A represents a 30% increase in proteoglycan mass and a 15% increase
in collagen mass, whereas B represents a 15% increase in proteoglycan
mass and a 30% increase in collagen mass. In C-E, the growth tensor
components were specified so that the total mass deposited for each of
the constituents was the same as in A. In C, the collagen material

constants ( µc c,Γ ) were each increased by 30% to represent a
stiffening of the collagen network, possibly due to increased crosslink
density. D may model a loading regimen that results in a preferential
direction for mass deposition in the extracellular matrix. In E, the

growth tensor components ( e egrr g
α

θθ
α= ) were specified to be linearly

decreasing from r= 0 to r=R. This non-uniform case may more
accurately model a real growth process, where the mechanical
parameters that drive the growth process are nonhomogeneous.

To solve the boundary-value problem, the equilibrium equations
(5)1 subject to the traction-free boundary conditions were solved for
the solid matrix strain tensor using (1), (4), and (6-8). Then, the
constituent elastic strains were calculated from (1) and (4)1, the
constituent stresses were calculated from (7-8), and the constituent
volume fractions were calculated from (2) and (4)2. Finally, the solid
matrix strain tensor was used to calculate the radial and axial
displacements of the solid matrix to determine tissue geometry.
Results are presented for an initially cylindrical specimen with radius
R=1 mm and height H=1 mm.

RESULTS
For cases A-D, the solid matrix strain and, consequently, the

constituent elastic strains, volume fractions, and stresses were all
homogeneous (Table 1). Also, the constituent stresses were spherical
tensors and the total solid matrix stress was zero. For E, the solid
matrix strain components varied with radial position r. Consequently,
the constituent volume fractions (Fig 1A), constituent stresses, and
total solid matrix stress (Fig 1B) varied with radial position r (the solid
matrix axial stress was zero everywhere). The final geometry of the
specimen depended on the type of growth that occurred (Table 2). The
final geometry was cylindrical except for case E, where the axial
displacement of the solid matrix depended on radial position r.

CASE φp(%) φc(%) φf(%) Tp (MPa) Tc (MPa)

reference 2.00 10.00 88.00 -0.051 0.051
A 2.13 9.13 88.74 -0.054 0.054
B 1.87 10.87 87.26 -0.048 0.048
C 2.41 10.56 87.02 -0.064 0.064
D 2.28 9.13 88.59 -0.054 0.054

Table 1. Constituent volume fractions and stress results.
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Figure 1. Results for non-uniform planar growth.

CASE D(mm) H(mm) V(mm^3)

reference 2.00 1.00 3.14
A 2.16 1.08 3.95
B 2.14 1.07 3.86
C 2.06 1.03 3.45
D 2.21 1.03 3.94
E 2.07 1.02 3.42

Table 2. Diameter, height, and volume of each specimen.

DISCUSSION
The results quantify how the tissue composition, constituent

stresses, and geometry of growing cartilage depend on the relative
amounts of growth of the constituents (A vs. B), the amount of
collagen remodeling (A vs. C), and the symmetry of the growth
tensors (A vs. D). Also, the results predict that non-uniform growth
leads to a nonhomogeneous specimen with a residually-stressed solid
matrix (E), in agreement with previous studies. The results presented
here and in [3] suggest that the cartilage growth model can be used to
quantify the evolution of the nonhomogeneous material properties and
tissue composition during a growth and remodeling process.
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