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INTRODUCTION
The pericellular matrix (PCM) is a narrow region of tissue surrounding
chondrocytes in articular cartilage and is believed to influence the
mechanical environment of the cell. Compared to the extracellular
matrix (ECM), the PCM contains type VI collagen and has a higher
proteoglycan concentration. As material parameters for the chondron
(cell+PCM) are obtained, biomechanical models can be developed to
study the effect of the PCM on signal transmission to the cell. In a
multiscale biphasic FEM model of deformation due to a step load,
Guilak and Mow [2] demonstrated that the inclusion of a PCM layer at
the microscale significantly altered the local mechanical environment
of a single cell. Recently, a layered contact solution was used in a
micropipette aspiration experiment to determine PCM elastic
properties for intact chondrons extracted mechanically from human
cartilage.  The mean PCM Young’s modulus  was reported as 66.5KPa
in the healthy group and 41.2KPa in the osteoarthritic group [1].
This study considers a simplified model for dynamic loading of a
single chondron idealized as a spherical cell with attached PCM layer
(Fig.1). Both regions are assumed to be linear isotropic biphasic
continua in purely radial deformation.  To date, only chondron elastic
parameters have been measured. Hence, this study focuses on
analyzing effects of the reportedly large PCM-to-cell modulus ratio on
transmission of displacement through the PCM layer. Analytical and
numerical solutions are employed, respectively, for the cases of
uniform and non-uniform permeability in the chondron.
MODEL
The reduced biphasic governing equations are:
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Figure 1. Spherical model of a chondron
We model deformation due to a dynamic sinusoidal displacement
input (amplitude 

† 

u0, forcing freq. 

† 

w ). The boundary conditions are:

† 

u(0,t) = 0,     u(b,t) = I(t) = u0 sinwt (3)

At the cell-PCM interface, the interface conditions of continuous
displacement and traction reduce to:

† 

[[u(a,t)]] = 0,       [[H A∂ru(a,t)]] = 2a-1(lC - lP )u(a,t) (4)

The two arbitrary functions in (2) can be used to satisfy pressure
continuity at 

† 

r = a  and to match to an applied pressure at 

† 

r = b.  The
pressure and displacement fields uncouple and equations (1),(3-4)
yield a signal transmission model that was used to determine the
scaled amplitude of the transmitted signal 

† 

O(t) = u(a,t) /u0 .

Uniform permeability: analytical series solution
In the case

† 

kC = kP , (3-4) give rise to an eigenvalue problem that

admits real eigenvalues and orthogonal eigenfunctions[3].  Condition
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(3b) is incorporated into the solution via Duhamel’s principle. The
following series solution for chondron displacement results:
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The eigenfunctions in (5) are:
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where 

† 

rj = g j
1/ 2(kHC

A )-1/ 2 and 

† 

s j = g j
1/ 2(kHP

A )-1/ 2 .  The constants

† 

g j,d j ,k j are eigenvalues that can be determined from a single reduced

characteristic equation in 

† 

g j . A detailed derivation of (5-6) with

formulae for 

† 

K j (w),L j (w),a1,a2,a3  can be found in [3].

Non-uniform permeability: finite difference solution
In the case 

† 

kC ≠ kP , equations (1) ,(3-4) do not admit an analytical
solution and were solved numerically.  A finite difference method was
used to discretize (1) with a forward difference in time and a centered
difference in space.  A regular spatial mesh was chosen such that no
point was coincident with 

† 

r = a .  Condition (4a) was enforced by

equating displacements at the two mesh points on either side of the
interface.  Condition (4b) was enforced on either side of the interface
using a first-order difference, thus ensuring that no derivatives were
taken across the interface.  For the results presented, 300 spatial points
and 3000 time points were sufficient to compute steady-state
displacement amplitudes to two decimal places. In the case of uniform
permeability, the numerical solution was in agreement with (5).
RESULTS
Characteristic diffusion time for the chondron
In the case 

† 

kC = kP , an asymptotic analysis of the characteristic
equation for a stiff PCM yielded the relation 

† 

tP = (0.04953)tC [3],

where 

† 

tC = a2 /(kHC
A ) is the biphasic gel relaxation time for the

chondrocyte.  Our model indicates that the presence of a stiff PCM
layer reduces the biphasic gel relaxation time of the chondron by a
factor of 20. Hence, a stiff PCM dissipates transient deformation
components on time scales that are rapid compared to the biphasic gel
relaxation time of the cell alone.
Parametric analysis of steady-state displacement amplitude
As a measure of mechanical signal transmission in the chondron, we
conducted a parametric analysis of the scaled steady-state amplitude at
the cell-PCM interface 

† 

O(t) = u(a,t) /u0  that results after an interval
of 10secs(Fig. 2).  The geometry  was set at 

† 

a =10mm, b =12.5mm
and fixed material properties were

† 

n C = 0.45, n P = 0.1, EC =1KPa  and

† 

kC =10-15m4 (Ns)-1.The applied displacement amplitude in (3b) was
taken as 

† 

u0 = 0.1(b - a) .  Amplitude was determined for 20 forcing

frequencies(0-3Hz) with variation of the parameters 

† 

EP and 

† 

kP .  For
uniform permeability on the order typically associated with human
articular cartilage, we observed that an increasingly large ratio of
PCM-to-cell Young’s modulus enhanced signal transmission to a near
optimal state (Fig. 2a).  We also observed a significant decrease in
transmission amplitude for the reported mean osteoarthritic modulus
[1], particularly at higher frequencies. Increasing the permeability of
the PCM to 100 times that of the cell enhanced signal transmission and
reduced differences between the healthy and OA cases(Fig. 2b).

Transmission was greatly diminished when the PCM permeability was
100 times smaller than that of the cell (Fig. 2c). As experimental
measurements of chondron permeability become available, we will
develop more elaborate signal transmission models.
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Figure 2. Parametric analysis of displacement signal
transmission at steady-state


