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INTRODUCTION 
Cryopreservation is a critical technology for bringing tissue-

engineered biomedical products to market, whereas the shelf-life of 
mammalian cells is short (on the order of hours), and the need for 
inventory control, quality control, and product distribution requires 
storage of living biological materials for periods ranging from weeks 
to months or years.  Freezing of tissues in which cells are in contact 
with each other (e.g., liver, skin, kidney) can result in significant 
damage due to the ability of deleterious intracellular ice to propagate 
from cell to cell via gap junctions or other intercellular structures [1].  
Thus, towards the goal of minimizing damage associated with the 
cryopreservation process, we have developed theoretical models of 
intercellular ice propagation in confluent tissues.   

Based on experimental observations in micropatterned tissue 
constructs with well-defined cell-cell interactions, we have developed 
a microscale model of the kinetics of ice propagation [1], allowing us 
to simulate ice formation in one-, two-, or three-dimensional tissues 
containing up to on the order of 106 cells (i.e., a 2D monolayer with 
area 1 cm2, or a 3D tissue with volume 1 mm3), using Monte Carlo 
techniques [2].  In order to overcome the prohibitive computational 
costs of simulating discrete cell freezing events in larger tissues, we 
have now developed a continuum approximation of intracellular ice 
formation (IIF) in confluent tissues.  We have previously shown that 
the kinetics of IIF in tissue are governed by two processes—
spontaneous IIF (e.g., by intracellular ice nucleation) and intercellular 
ice propagation—giving rise to the appearance of clusters of frozen 
cells within the tissue, which are initiated by a spontaneous IIF event 
and subsequently grow (via ice propagation) until they “impinge” on 
other clusters or on the tissue boundaries [2].  The phenomena 
observed during freezing of confluent tissue are thus analogous to the 
processes of nucleation, growth, and impingement of crystals from a 
supercooled melt.  Here, we present an analysis of the kinetics of IIF 
in one-dimensional tissues using the well-known Johnson-Mehl-

Avrami (JMA) theory of phase transformation kinetics [3].  The JMA 
equation was modified to account for the non-negligible size of the 
initial “nuclei” (i.e., the spontaneously frozen cells). 

THEORETICAL BACKGROUND 
The JMA theory describes the kinetics of phase transformation 

using the equation 

 { }nkttX −−= exp1)(  (1)   

where X(t) is the transformed volume fraction as a function of time; k 
and n depend on geometric factors and on the mechanisms of 
nucleation and crystal growth.  The values of k and n can be estimated 
from experimental measurements by linear regression on a log-log plot 
of ln{(1-X(t))-1}.   

In tissue freezing, the transformed fraction is equal to the fraction 
of frozen cells, i.e., the probability of IIF.  To predict the kinetics of 
IIF, we define a non-dimensional time τ and a non-dimensional 
propagation rate α as previously [2]: 

 dtJd i ⋅≡τ  (2) 

 ip JJ≡α  (3) 

where Ji and Jp are the average rates of spontaneous and propagative 
IIF, respectively, per cell and per interface with a frozen neighbor.  
Thus, in a one dimensional tissue, the average number of frozen cells 
N in a transformed region at a time δτ after the spontaneous IIF event 
that initiated the transformation of this region, is given by 

 12 +⋅= δταN  (4) 

if α is constant and Ji is nonzero, and the transformed region does not 
impinge on other clusters of frozen cells, or on the tissue boundaries.  
Using the customary Avrami approach for taking into account the 
formation and impingement of multiple transformed regions, it can be 
shown that the probability of IIF is 
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 ( ){ }ττα +⋅−−= 2exp1IIFP  (5) 

where the second term in the exponent arises from the cells that freeze 
spontaneously.  An analogous term is not present in Eq. (1) due to the 
fact that the size of the initial nucleus is neglected in conventional 
JMA theory.  Thus, we will describe the kinetics of IIF using the 
transformation 

 ( ){ } knPIIF lnln1lnln 1 +⋅=−− − ττ  (6) 

where k=α and n=2 for IIF in a one-dimensional tissue.  Note that τ 
can be estimated from experimental data as previously described [1], 
so Eq. (6) should prove useful for analyzing experimental data.   

RESULTS AND DISCUSSION 
To test our method for analyzing the kinetics of IIF in tissues, we 

simulated intracellular ice nucleation and intercellular ice propagation 
using Monte Carlo techniques, as previously described [2].  Figure 1 
shows the probability of IIF in one-dimensional tissues (each 
consisting of 1,000 cells), transformed using Eq. (6), for various 
values of the propagation rate α.  As seen, the transformed curves are 
approximately linear, except for deviations and random scatter during 
the initial stages of IIF.  A less pronounced deviation can sometimes 
also be observed near the end of the transformation.  These deviations 
are expected, whereas the continuum approximation will not be valid 
when there are only a small number of frozen cells (or unfrozen cells).  
Linearity improves for larger tissues, or if data from an ensemble of 
multiple identical tissues are aggregated (data not shown). 

Aggregate IIF data for linear cell arrays comprising a total of 105 
cells were obtained by numerical simulations at various values of α 
and various tissue sizes.  The Avrami coefficient k and exponent n 
were obtained by linear regression to the data transformed using 
Eq. (6).  As shown in Fig. 2, the Avrami coefficient was 
approximately equal to the expected value of n=2, for α≥1, for all 
tissue sizes.  Similarly, Fig. 3 shows that the Avrami coefficient 
measured in the numerical experiments was approximately equal to the 
expected value k=α.  For α<1, the value of n appears to decrease with 
decreasing α, which is consistent the theoretical result that n=1 for the 
limiting case α=0. 
 

 
Figure 1.  Kinetics of IIF in a one-dimensional tissue of 
1,000, transformed using a modified Avrami equation 

(Eq. 6). 
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Figure 2.  Avrami exponent for IIF in one-dimensional 

tissues of various sizes.   The dotted line represents the 
theoretical result n=2. 
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Figure 3.  Avrami coefficient for IIF in one-dimensional 
tissues of various sizes.  The dotted line represents the 

theoretical result k=αααα. 

CONCLUSION 
A modified Avrami theory which takes into account the non-

negligible contribution of nuclei to the transformed fraction can be 
used as a continuum approximation for ice formation and propagation 
within confluent tissues.  By extending the present analysis to two- 
and three-dimensional tissues, models will be obtained that can be 
used to simulate IIF in macroscale tissues, as well as to estimate the 
magnitudes of Ji and Jp by fitting model predictions to experimental 
observations. 
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