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ABSTRACT 
The effect of various parameters on the p

rate (Bopt) of an arbitrary biological system 
well-defined water transport model. Th
investigated are apparent activation en
permeability of the membrane to water (Lpg),
volume (Vb), and the diameter of a sph
determined assuming a damaging criterion 
water trapped (%WT), along with the end tem
transport is assumed to cease (Tend). 
physiologically relevant range is selected (see

A significant observation of this study 
inverse relationship between the ratio of initi
fluid (water) to the surface area available for
as, WV/SA) and the predicted optimal cooling
is then used to develop a Generic Optim
(GOCRC) with the activation energy (ELp)
cooling rate (Bgraph) as the ordinate. By usi
calculate Bopt values for any combination o
assuming a predetermined value for %WT a
case these being 5% and –45 ˚C respectiv
mathematical equation. 
 
Table 1: Physiologically Relevant Range of

Parameter Range Selected 
Lpg 0.01 to 100.0 µm/min-at

ELp 4.0 to 100.0 Kcal/mole

Vb 0.2Vo to 0.8Vo 

Tend -45 ˚C to –15 ˚C 

D 5.0 to 50.0 µm 
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INTRODUCTION 
The rate of cooling is an important determinant of cell survival in 

a cryopreservation process. It is observed that both slow freezing and 
rapid freezing are lethal to cell survival and maximum % of survival is 
achieved at an intermediate rate. This intermediate cooling rate is 
referred as the ‘Optimal Cooling Rate’. Mazur [3] formulated a two-
factor hypothesis to explain the two mechanisms that are responsible 
for cell injury/survival during slow and rapid cooling processes; a) at 
slow cooling rate, injury occurs due to cellular dehydration, i.e., due to 
water transport from the cell, (b) at high cooling rate, cellular damage 
is associated with the formation of ice inside the cells, i.e., by 
Intracellular Ice Formation (IIF). Several mathematical models have 
been developed to account for both dehydration and intracellular ice 
formation in a biological system [1-5]. A well-accepted model for 
cellular dehydration is given below. 

 
Mathematical model of water transport: 

Mazur [2] developed a mathematical model for the volumetric 
change in cells due to the water transport during freezing process in 
the presence of extracellular ice. The reduction in the cellular volume, 
due to the loss of intracellular water is modeled thermodynamically as, 
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where Lp is the plasma cell membrane permeability to water and is 
defined as  [1], 
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A detailed description and the various assumptions made in the 
development of the water transport model are discussed elsewhere [1-
5] and are beyond the scope of this abstract. 

 

Step Size  
m 10.0 µm/min-atm 

 2.0 Kcal/mole 

0.2Vo 

-15 ˚C 

5.0 µm 
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RESULTS AND DISCUSSION 
 In this study we found an exact linear relationship between the 
change in Lpg and corresponding change in Bopt. The relationship 
between Bopt and the other investigated parameters namely ELp, Vb, 
Tend, %WT and D is shown in Table. 2.  Interestingly, at higher values 
of ELp ( ≥ 50 kcal/mole) the variation in Bopt is very small ( ± 5%) 
irrespective of the change in other parameters. 
    
Table 2: Effect of Various Model Parameters on Bopt 

 
Further analysis of the simulated optimal cooling rate data 

revealed that the predicted Bopt values are constant for a given ratio of 
the initial volume of intracellular fluid to the surface area available for 
water transport (WV/SA) during the freezing process (as shown in 
Fig.1). At a given ELp value the Bopt value has a linear inverse 
variation with the WV/SA ratio. For example the Bopt value at 
WV/SA=1.0 and ELp=30 Kcal/mole is 228 ˚C/min and when the value 
WV/SA reduces by a factor 5 the Bopt increases by the same factor of 5 
(i.e., at WV/SA =0.2, the Bopt is 1140 ˚C/min). This inverse relation is 
found to extend to any ratio of water volume to surface area (WV/SA).  
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 Figure 1: The variation of Bopt with WV/SA at different ELp values. 
The data is shown at Lpg=1.0 µm/min-atm, Tend= -45 ˚C and %WT = 5.0  
 

The observed relationship between WV/SA and Bopt can be used 
to collapse all of the curves shown in Fig.1 into a single curve as 
shown in Fig.2. We call Fig.2 as the Generic Optimal Cooling Rate 
Chart (GOCRC). The optimal cooling rate (Bopt) for any biological 
system can be calculated using a simple mathematical relation shown 
inside of the Fig.2. The ‘Bopt’ in the LHS of the equation is the optimal 

cooling rate to be calculated and ‘Bgraph’ the first term in the RHS of 
the equation is the cooling rate shown on the Y-axis of the GOCRC. 
Significantly, the GOCRC can be used irrespective of the cell 
geometry (spherical, cylindrical or a Krogh cylinder) as long as the 
physiologically relevant data is provided.      

As stated earlier, to generate the GOCRC (Fig. 2), we assigned 
values to two model parameters: Tend (-45˚C) and  %WT (5%).  
However, similar GOCRC’s for other values of Tend and %WT have 
been generated for appropriate use (data not shown).  The major 
limitation of the GOCRC’s is the non-inclusion of IIF (intracellular ice 
formation) in our model to predict the Bopt values. 

Figure 2: Generic Optimal Cooling Rate Chart (GOCRC).  
                                     

CONCLUSION: 
The effect of various parameters on the predicted optimal cooling 

rate of an arbitrary biological system has been thoroughly investigated 
using a well-defined water transport model. By analyzing the 
relationships between various investigated parameters, a Generic 
Optimal Cooling Rate Chart (GOCRC) is developed.  
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Parameter Change in 
value 

Change in 
‘Bopt’ 

Nature of 
relation 

Lpg +ve +ve Linear 

ELp +ve -ve Nonlinear 

  Vb +ve +ve Nonlinear 

Tend +ve -ve Nonlinear 

           D +ve -ve Nonlinear 

  %WT +ve +ve Nonlinear 
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ELp=10 Kcal/mole

ELp=30 Kcal/mole

ELp=70 Kcal/mole
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