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INTRODUCTION
Agarose gel has been commonly used for the cell culture of

cartilage and soft tissue and also been used as phantom material for
material property characterization using image techniques. The
mechanical property of the agarose gel would therefore be important
for such experiments and analyses. A fractional calculus approach had
been proposed and applied as a method of describing the mechanical
properties of viscoelastic materials. In the present study, the dynamic
mechanical properties of agarose gels and its relationship with
frequencies and agarose concentrations were characterized with a
simple form of fractional derivative model.

METHODS
Gels with agarose concentration (weight/volume, w/v) of 2%,

3%, 4% and 5% were prepared by dissolving appropriate amount of
Difco Bacto agar into the distilled deionized water. The solution was
sealed and heated to 90~95 °C for 15 minutes and was magnetically
stirred to homogenous. The solution was then cooled to below 35 °C
for curing. After cured, gels were subject to testing immediately. 2 mm
thick samples were cut from the gel and measured prior to testing (i.e.
diameter, thickness). Mechanical properties of the gels were tested in
frequency sweep shear mode with DMA 2980 (TA Instruments, New
Castle, DE) over a frequency range of 1-20 Hz at a constant amplitude
of 20 µm. Samples were compressed by 1 mm of their original
thickness before testing. Complex modulus (G*), elastic modulus (G’),
loss modulus (G”) were recorded. Using the fractional derivative
method developed by Suki et. al. (1994), the stress relaxation of the
agarose gel was modeled as:
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where s (t) and e(t) was the stress and strain as a function of time,
respectively, and Q was a viscoelastic parameter of the system. The
fractional derivative operator was defined by:
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The order of the fractional derivative, ß, is the primary parameter
in the model that completely characterizes the rheological behavior of
the gels. Applying a Fourier Transform to Eq. (1), the complex
modulus can therefore be modeled as:
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The magnitude of the complex modulus G* was thus modeled as:
ββ ϖϖω 2222|)(*| ZHG += (6)

A custom-written MATLAB® program estimated the parameters
H and Z via global multiple non-linear fitting of the G* as a function
of the frequency ?  (Yuan, 2000). ß, G’ and G” were thereafter
calculated according to Eq. (3), (4) and (5). To investigate the
concentration (C) dependence of ß, we started with the well-accepted
assumption (Benkherourou, 2000) that:
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Taking the first-order derivative of G’ as a function of C, and
applying Eq. (4) and (5), we got:
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In order for Eq. (8) to hold true for any arbitrary values of C, it
requires both items on the left be proportional to C?-1. Since G” was
sufficiently small, by neglecting G”, the second term in Eq. (8) led to:
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RESULTS
The fitted data shows that G* and G’ of the gel increase slightly

with frequency (Figure 1 and 2) and ß is within the range of 0.025 to
0.03. These are consistent with the previous study by Ross-Murphy el.
al. (1993). A curve fitting between ß and C is shown in Figure 3.

DISCUSSION
A theoretical basis of fractional derivative to the viscoelasticity of

polymers was provided by Rouse’s theory (Bagley, 1983) predicting
the macroscopic mechanical properties of long, coiled, and entangled
polymer molecules in a Newtonian solution. Rouse’s theory leads to:
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The fractional power leads to a fractional derivative when Eq. (10) is
transformed into time domain. (Bagley, 1983)

The model used in the present study showed that parameter ß
primarily determines the viscoelastic properties of the gel. Indeed, for
a given agarose concentration, when ß? 0, the fractional derivative

model reduces to a pure elastic material; when ß? 1, the model can be
simplified to a pure viscous material. For any intermediate values of ß,
the model will exhibit a viscoelastic material property.

Such fractional derivative model can provide information in tissue
culture studies employing dynamic pressurization (Saris, 2000). The
fact that ß=0.025 ~0.03 indicated that the elasticity of the agarose gel
significantly prevails its viscosity. G’ and G” of the agarose gel is only
slightly frequency-dependent, verifying its usage in dynamic pressure
stimulation in tissue engineering. Such model may also contribute to
magnetic resonance elastography (MRE) phantom study. MRE has
been proposed as a novel method of measuring the stress distribution
within the object. Agarose gel, due to its good elastic property and
availability, has been selected as the phantom material. The conversion
of shear wavelength to the elastic or viscous modulus can not be well
studied without establishing an analytical model for the tested
material. Our fractional derivative model, when expended to higher
frequency (150~500 Hz), may provide a fast method to validate the
current MRE wavelength-modulus conversion algorithm.
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Magnitude Complex Modulus (G*) vs. Frequency
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Figure 1. Magnitude of the complex modulus vs.
frequency for agarose gel of different concentrations

Storage and loss modulus vs.
 frequency for 4% gel
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Figure 2. Elastic modulus and loss modulus as a
function of frequency for 4% agarose gel

Beta vs. Concentration Beta = 0.0032|Ln(C)| + 0.0397
R2 = 0.9519
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Figure 3.  ß as a function of agarose concentration with
a curve fitting between ß and |ln C|


