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INTRODUCTION 
There is an ongoing need to develop efficient, high fidelity material 
models to simulate the stress (or strain) response of soft biological 
materials. Fractional Calculus is being used to develop fractional-order 
viscoelastic (FOV) constitutive equations for applications to soft 
biological tissues. Fractional calculus is concerned with the 
development and application of differential equations of non-integral 
order β (0 <β < 1), and the methods for their solution [1, 2]. The 
attraction in using a constitutive description based on fractional 
calculus for modeling soft tissues is their potentially superior 
accuracy, and the possibility of correlating the hierarchical structure of 
biological tissues to the fractional order β [3]. Fractional calculus 
formulations have recently been applied to a number of biological 
tissues and processes [3 - 5]. In a continuing effort to assess the ability 
of FOV to represent soft tissue behavior, we formulated a one-
dimensional version of FOV - “quasilinear fractional-order 
viscoelasticity” (QLFOV), and applied it to porcine aortic valve 
(PAV) valve tissues. A PAV cusp is a tri-layered, inhomogeneous, 
anisotropic, nonlinear viscoelastic material and provides a non-trivial 
test of the capabilities of any potential soft tissue model. Our 
objectives were to: (i) evaluate QLFOV material parameters for PAV 
tissues from stress-relaxation experiments done at a reasonably high 
strain-rate, and (ii) assess the predictive ability of QLFOV by 
simulating the stress response of the heart valve tissues to a saw-tooth 
strain history. 
 
MATERIALS AND METHODS 
The quasi-linear form of the constitutive equation (CE) for one 
dimensional fractional-order viscoelasticity has been derived from the 
constitutive equation for the standard, linear, fractional-order 
viscoelastic solid [6] and can be written as: 
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where T(t) is the stress (or tension) at time t due to a strain history ε(s), 
0 < s ≤  t, and Gβ (t) and Te(t) are material functions: Gβ (t) is the 
normalized relaxation modulus (NRM) and Te(t) is the elastic response 
(ER). The NRM is given by:  
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where β (0 <β < 1) is the fractional order of evolution, λ (> 0) is the 
characteristic time for stress relaxation (relaxation time), ρ (>λ) is the 
characteristic time for creep (retardation time), and  Eβ (z) = Eβ, 1 (z) = 
E(β,1,z) is the Mittag-Leffler function [1]. We note that Eβ (0+) =1; 
thus Gβ  (0+)=1, and Gβ  (t) is a normalized function of time. The role 
of the Mittag-Leffler function in fractional calculus is similar to that of 
the exponential function in traditional calculus; in fact they are related 
through E1,1 (t) = et.  The ER is derived from the measured stress-
strain response Tm(ε), which is represented by:  
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The piecewise exponential-cubic function (3) can accurately represent 
the non-linear elastic behavior of heart valve tissues that typically have 
a long toe region [7]. In (3), a, b, c, d, e, and f are fitted parameters and 
εT is a specified transition strain. As in quasilinear viscoelastic (QLV) 
theory, the material functions Gβ (t) and Te(ε) are to be obtained from 
step-strain experiments in order to justify the strain-time convolution 
manifested in (1). Since such experiments are impractical, alternative 
experiments at sufficiently high speed usually suffice, although special 
methods for accurate parameter extraction are required. 
Parameter Estimation 
To approximate the true material parameters from practical finite 
strain-rate experiments, we follow the procedure given in [8]. Briefly, 
the ER is represented by a scaled-up version of the measured stress-
strain response (3), the scale-up factor being an additional parameter 
that enforces equality of stress at the end of loading and the start of the 
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stress relaxation of the hypothetical infinite strain-rate experiment. 
Both loading and relaxation data are fitted separately to (3) and (2), 
respectively. The CE is then imposed at the start and end of the 
relaxation experiment resulting in two equations. We solved the 
equations as a system for the scale-up factor, and in order to keep the 
system linear,  α. 
Materials 
PAVs were excised from fresh hearts obtained from a local abattoir. 
Rectangular strips of dimensions 10 mm x 5 mm (n = 3) were cut from 
the cusps in the circumferential direction (Fig. 1).  
 

5 mm

 
Figure 1:  Porcine aortic valve cusp showing a typical 

circumferentially oriented strip used in tensile testing. 
 
Experimental Tests 
Tensile testing was performed with an Instron 8511 servo hydraulic 
testing machine (Plus series, Instron, Canton, MA), using a 5.0 lb load 
cell (Sensotec, Columbus, OH).  All tests were conducted in a bath of 
Hanks physiologic saline solution at 37oC.  Each specimen was held in 
sandpaper-lined plastic grips that were inserted between the actuator 
and the load cell of the testing system. Prior to tensile testing, 
specimens were subjected to a novel preconditioning protocol 
designed to generate repeatable hysteresis loops and stress relaxation 
curves simultaneously. Immediately after the preconditioning, each 
specimen was loaded at 40 mm/s to a pre-determined displacement 
equivalent to a load of 600 g, and maintained at that displacement for 
1000 s (stress relaxation). The specimen was then unloaded at 4 mm/s 
to zero load. This initial stress relaxation test was used for specimen 
characterization according to the method described above. 
Immediately after the stress relaxation test, the specimen was 
subjected to low amplitude (5% strain) saw-tooth straining at 4 mm/s, 
the saw-tooth strain history being restricted to the linear range of the 
specimen’s measured stress-strain data. All loads were converted to 
tension through appropriate scaling. 
Simulating the saw-tooth experiment 
With the specimen characterized from the initial relaxation test 
(material parameters known) and the experimental saw-tooth strain 
history as input, the stress response was predicted using (1), and 
compared to the experimental data. 
Error Quantification 
Least squares relative error measurements were used to quantify both 
global and local (stress peaks and valleys) errors in the prediction of 
the stress.  
 
RESULTS 
We found that both initial relaxation rate and overall relaxation are 
governed predominantly by β and α. For PAV circumferential strips, 
the material parameters were (mean ± SEM): β = 0.36 ± 0.02, α = 0.37 
± 0.04, and λ = 0.5 ± 0.01. QLFOV was reasonably accurate in 
predicting the saw-tooth stress response of PAV specimens: peak error 
= 8.4% ± 2.2%, valley error = 7.5% ± 0.7%, and global error = 9.2% ± 
1.7%; (Fig. 2). 
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Figure 2: Comparison of QLFOV prediction (solid line) to 
experimental data (points).  
 
CONCLUSION 
We have demonstrated that quasi-linear fractional order viscoelastic 
theory can be used to model the stress response of porcine aortic 
valves with good fidelity. Work is now in progress to apply QLFOV to 
the 1D response of other biological tissues and to implement FOV in 
3D and for finite deformations.  
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