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INTRODUCTION 
 Blood flow in the arterial system is modeled by solving the 
governing equations on a domain and prescribing boundary conditions 
to account for the vessels downstream. These outflow boundary 
conditions have been generally limited to prescribed velocity, pressure 
or traction. The limitation of this approach lies in the fact that this 
necessitates a priori knowledge of the distribution of the blood flow or 
the outlet pressure for the branch vessels. This information is rarely 
known in most practical situations and depends upon the solution 
within the domain of interest. Olufsen has described a finite difference 
method for coupling a numerical method with impedance derived from 
a fractal tree [1]. Others have adopted an iterative coupling approach. 
 We have developed a space-time finite element method for 
solving the one-dimensional equations of blood flow including a 
resistance and an impedance boundary condition based on fractal trees 
[2,3]. However the impedance boundary condition assumes flow 
periodicity and thus cannot model dynamic changes downstream such 
as occur in the coronary bed. We describe a new approach for 
specifying outflow boundary conditions using a “coupled multidomain 
method" that provide a mathematical framework to develop several 
types of boundary conditions [4].  

METHOD 
Governing equations and finite element formulation 
 The flow is assumed to be Newtonian, incompressible and with a 
time-varying parabolic flow profile. The primary variables are the 
volumetric flow rate Q and the cross-sectional area S, which is related 
to the pressure through a constitutive relationship for an elastic 
domain: 
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The constant density and kinematic viscosity of the fluid are given by 
ρ and ν, the external force by f, and ψ is an outflow function. The 
continuity and momentum balance equations are integrated and written 
as a system of quasi-linear partial differential equations: 
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We use initial conditions for S and Q, a prescribed inlet flow rate, and 
outlet boundary conditions discussed subsequently. 
 The weak formulation of the initial boundary value problem is 
given as follows: find U such that for every weighting function 
W=[W1,W2]T, 
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Multiscale Method 
 We adopt a multiscale approach [5] to derive appropriate outflow 
boundary conditions. We divide the spatial domain Ω=[0,L] into an 
upstream “numerical” domain Ω =[0,B], and a downstream “analytic” 
domain 

ˆ 
′Ω =[B,L], separated by the cross sectional area at B. We 

define a disjoint decomposition of our variables and weighting 
functions, for example for our unknown solution vector, U, 
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We define the operators M and H on the ′Ω domain based on the 
model of the downstream domain 
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We insert these expressions into our variational form enforcing the 
continuity of the trial and test functions at the interface. We thus 
obtain the original variational form specialized to the 1D numerical 
domain , with the addition of a boundary term (boxed below) 
accounting for the interface to the 1D analytic domain, 

ˆ Ω 
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Space-Time Derivation  
 We follow the general Space-Time method [2] with piecewise 
constant in time shape functions. Thus, in the time slab from tn to tn+1, 
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We will look more precisely at the last term but first we define: 
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RESULTS: MODELING THE DOWNSTREAM DOMAIN 
 We can use various representations of the downstream domain, 
depending on the importance of the vasculature involved. We neglect 
nonlinearities and the longitudinal viscous force to obtain:  
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M2 and H2 depend essentially on the constitutive equation in the 
downstream domain. With a linear constitutive relationship, 
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The operators M2 and H2 for every boundary condition are influenced 
only by functions at the present time and the initial conditions. Thus: 
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Instantaneous case 
 The Dirichlet (prescribed flow rate or pressure) and purely 
resistive boundary conditions depend only on the present time, e.g. in 
the resistive case,  
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There is no memory for these boundary conditions. The flux term is 
discretized in time to obtain in time slab n+1: 
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Memory case 
 More sophisticated boundary conditions include the Windkessel 
model, impedance based models where the downstream domain is 
approximated using a periodic one-dimensional linear wave 
propagation theory, and the more general damped wave equations 
(which do not assume periodicity). For brevity, we only provide here 
the example of the impedance boundary condition defined over one 
period T, with y(z,t) the inverse Fourier transform of the admittance, 
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For all these boundary types, the operators M1 and H1 involve time-
integrals. The flow rate depends on the history of the pressure or the 
cross sectional area. A common approach is used for those simple, 
double or triple time integrals: they are divided into parts where the 
solution is constant in time. For example, in the impedance case where 
there is a double integral in time, with N the number of constant time 
steps in one period, and pressure pn taken at Sn and tn, we find: 
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For the damped wave equations solved with Green’s functions, we 
obtain triple integrals in time that can be treated in a similar way. The 
flow rate is a function of pressure history and depends also on waves 
coming from the far end boundary conditions and the initial conditions 
everywhere in the downstream domain. This thus represents more 
accurately the underlying physiology of pulse wave propagation.  
 
POTENTIAL APPLICATIONS & FUTURE WORK 
 This new derivation will be implemented in a space-time finite 
element code to provide a general tool to model blood flow in part of 
the arterial system. The main organs and body parts outside the 
domain of interest can be modeled with different downstream 
representations in a consistent way. This approach is a step towards 
the modeling of the entire vascular system. 
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