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INTRODUCTION 
 Taylor, et al. have described the use of computational fluid 
dynamics (CFD) in a simulation-based medical planning system that 
enables the preoperative assessment of alternate treatment plans for 
vascular disease [1].  Validation of these simulation methods against 
experimental studies demonstrated favorable agreement in blood flow 
rates and flow rate waveforms in bypass grafts [2].  However, flow 
patterns were not compared.  Other validation studies have examined 
the accuracy of the blood flow patterns predicted by numerical 
simulation methods.  The most complex of the geometries used in 
these studies have been of bifurcations [3, 4] and anastomotic 
junctions [5, 6].   
 To date, no studies have validated the flow patterns predicted by 
numerical simulation methods for the more complex geometry of a 
stenotic vessel with a bypass graft under conditions that are suitable 
for surgical planning purposes.  Unlike many previous studies, the 
simulations in the following in vitro validation study assumed no a 
priori knowledge of the flow distribution between vessels.  
Furthermore, the model used in this study included both the proximal 
and distal anastomoses, thus incorporating both diverging and 
converging flow situations.  Comparisons were made between the flow 
patterns predicted by the numerical simulations and those measured 
using magnetic resonance imaging (MRI) for this geometry.  
  
MATERIALS AND METHODS 
 A phantom model was constructed out of a photoreactive resin 
using stereolithography [7].  The model consisted of a host vessel with 
a 75% stenosis, or narrowing in the vessel’s cross-sectional area, and a 
bypass graft attached both proximally and distally to the stenosis [8], 
as shown in Figure 1.  The fluid used in this experiment was a mixture 
of 39.8% glycerol, 59.7% distilled water, and 0.5% gadolinium by 
volume.  This mixture’s viscosity, as measured using a Cannon-Fenske 
viscometer (International Research Glassware, Kenilworth, NJ), was 
0.039 dyn s/cm2 at 22oC, and the density was 1.1 g/mL.  A blood flow 
pump (Harvard Apparatus, Holliston, MA) was used to generate a 
pulsatile flow waveform at the inlet of the model, and an 

electrocardiogram (ECG) simulator (Shelley Medical Imaging 
Technologies, London, Ontario, Canada) converted the pump’s trigger 
signal to an ECG signal used by the MRI system.  
 Magnetic resonance angiography (MRA) provided the volumetric 
data for the numerical simulations, while two-dimensional (2D) cine 
phase-contrast magnetic resonance imaging (PC-MRI) was used to 
measure the three components of velocity at the planes indicated in 
Figure 1.  The grad-warp corrected MRA 
data [9] was used to construct a solid model 
and finite element mesh, as described in [2], 
and the PC-MRI measured velocities were 
mapped onto the mesh inlet [10].   
 A no-slip boundary condition was 
applied to the walls and the outlet pressure 
was set to zero.  The fluid was modeled as 
incompressible and Newtonian with a 
viscosity and density as measured above, and 
the walls were assumed to be rigid.  Under 
these boundary conditions and assumptions, 
pulsatile flow was computed for 30 cycles 
using a previously validated finite element 
method [11].  The numerically computed 
velocities were then averaged over 8 cycles 
to produce relatively periodic results.      
 
RESULTS 
 Velocities averaged over cycles 14 to 21 
from the simulations were compared against 
the PC-MRI-acquired velocities at three 
locations, as indicated in Figure 1:  in the 
aorta (B), outlet (C), and graft (D).  Figure 2 
shows isocontours of the through-plane 
velocities at these locations at time points 
corresponding to the maximum and minimum flows.  The Womersley 
number was 5.9, and based on the average inlet velocity, the 
Reynolds’ number (Re) was 264.  

 
Figure 1.  Phantom 
model used in the 
experiment.  Inlet 

velocities are 
prescribed 

upstream (A) and 
comparisons of 

flow patterns are 
made at planes B 
(aorta), C (outlet), 

and D (graft). 
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Figure 2.  Comparison of isocontours of through-plane 
velocities in the aorta (plane B) at (a) minimum flow and at 
(b) maximum flow.  (c) and (d) compare results in the 
bypass (plane D) at the minimum and maximum flow time 
points respectively, while (e) and (f) are comparisons at the 
outlet (plane C) at the minimum and maximum flow time 
points respectively. 
 
DISCUSSION 
 There is reasonable agreement between the blood flow patterns 
measured using PC-MRI and those generated by the CFD methods, 
particularly at the bypass and aorta planes.  The magnitudes and 
shapes of the isocontours at these two locations are similar.  Although 
the velocity magnitudes at the outlet plane are also similar, there are 
more striking differences in the isocontour shapes.  This would be 
expected since two flow streams converge at the outlet location, 
resulting in more complex flow patterns than at the aorta or bypass 
planes.  The increase in complexity may be more difficult both to 
image with MRI as well as to model with CFD methods. 
 Numerous factors affect both the numerical simulations and the 
PC-MRI data.  The angle of the PC-MRI plane and the temporal 
resolution influence the PC-MRI accuracy, while the numerical 
simulations are sensitive to changes in the geometry, particularly the 
stenosis size and the graft attachment angle.  Investigation of 
parameters such as these could lead to even better agreement between 
the simulation results and the PC-MRI measurements.   
 The results presented in this investigation are promising, and 
future work would extend these comparisons to flows at higher Re.  
Current in vitro investigations have been limited to Re below 1000, 
while physiologically, the average Re in the human aorta is estimated 
to be in the range of 1325 to 2000 [12, 13].  The eventual goal is to 
achieve comparable agreement in in vivo experiments.   
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