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INTRODUCTION
In recent years, computational techniques have been used to

simulate blood flow in three-dimensional models of arteries and
applied to problems in disease research, device design and
preoperative planning. Most of these computational analyses have only
examined the velocity field (not the pressure field) and have treated
the vessel walls as rigid.  One of the better-known methods for
including wall deformability is the ALE (arbitrarily Lagrangian-
Eulerian) formulation for fluid-structure interaction problems [1].
Unfortunately, for many problems, ALE methods can be
computationally expensive and, perhaps due to the continual updating
of the geometry of the fluid and structural domain, not very robust.

A new approach for modeling blood flow in deformable arteries
termed the Coupled Momentum Method for Fluid-Solid Interaction
(CMM-FSI) is described here.  The main features of this method are:
• Strong coupling of the fluid and solid mechanics degrees of

freedom.  The velocity of the vessel wall is set equal to the
velocity of the fluid at the wall, since the same nodes are shared
by the solids mesh and the boundary of the fluids mesh.

• Vessel wall motion incorporated as a boundary condition for the
fluid.  The elastodynamics equations governing the vessel wall
motion are coupled to the conservation of mass and momentum
equations governing blood flow, by assuming that the vessel wall
thickness is small compared with the vessel radius.

• Membrane formulation for the wall. Bending is neglected and the
vessel wall is approximated by a membrane.

• Fixed fluid domain and linearized wall kinematics. The geometry
of the fluid domain and surrounding structures are fixed and the
deformations of the vessel wall are accounted for through the use
of linearized kinematics.
We present herein the CMM-FSI formulation and discuss how to

incorporate this method into existing rigid wall finite element codes.

METHODS
Governing equations (strong form)

Fluid mechanics problem. The strong form of the continuity
and momentum equations written in the advective form ([2,3]) for a
domain 3Ω ∈ℜ is given by:

, , , ,      ( , ) (0, )i t j i j i ij j i iv v v p f x t Tρ τ+ = − + + ∈ Ω × (1)

, 0      ( , ) (0, )i i iv x t T= ∈ Ω × (2)

We complete the strong form of this fluid mechanics problem by
providing suitable initial and boundary conditions.  The boundary is
given by (see figure 1) g h sΓ = ∂Ω = Γ Γ Γ∪ ∪ , g h sΓ Γ Γ = ∅∩ ∩ .

Figure 1.  Boundary decomposition for the Coupled
Momentum approach.

hΓ  and gΓ  represent the inlet and outlet boundaries, where

Neumann and Dirichlet condition are prescribed, respectively. sΓ
represents the lateral vessel wall.  While a no-slip boundary condition
would be prescribed on sΓ  in the case of a rigid wall approximation,
this constraint is removed in the CMM-FSI method to enable non-zero
wall velocity and is replaced by the condition:

           ( , ) (0, )ft n t x t Ti ij j i i sσ= = ∈ Γ × (3)

The fluid traction, f
it , will be specified using the elastodynamics

equations for the vessel wall.
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Solid mechanics problem.  The classic elastodynamics
equations are used to describe the vessel wall motion in a domain

3sΩ ∈ℜ , viz.,

, ,        ( , ) (0, )s s
i tt ij j i iu b x t Tσ= + ∈ Ω × (4)

The initial boundary value problem for the solid mechanics problem is
completed with a valid set of initial and boundary conditions.

The Coupled Momentum approach (weak form)
A new way of coupling the physics of the vessel wall and the

blood flow is introduced here.  This approach can be thought of as
using the solid mechanics problem as a special boundary condition for
the fluids problem, by relating the unknown traction f

it  on the lateral

wall of the fluid domain with the body force of the solids problem s
ib .

Womersley used an analogous approach to derive an analytical
solution for pulsatile flow in an elastic vessel [4].

Fluid mechanics problem. The formulation used in this work
is based on that described by Taylor et al. [3] and Whiting and Jansen
[2].  The semi-discrete Galerkin finite element formulation produces
the following weak form of the fluid mechanics problem:
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(5)

Solid mechanics problem. The surface traction f
it  on the

fluid lateral wall due to the wall motion is equal and opposite to the
surface traction s

it  on the vessel wall due to the fluids motion

( f s
i it t= − ).  If the vessel wall thickness a is small compared with the

vessel radius, this surface traction s
it  can be considered as a body

force for the solid membrane (see figure 2) using /s s
i ib t a= .

Figure 2. Relationship between the surface traction due to
the fluid motion f

it  and the solids body force s
ib .

The weak form of the solid mechanics problem, formulated in
terms of velocities, using the expression for the body force above and
a linear elastic constitutive model is:
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Combined problem.  If equation (6) is inserted into equation
(5), we obtain the following weak form for the Navier-Stokes
equations in a deformable domain:
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It is important to note that the standard Galerkin method (as presented
in equation (7)) is unstable for advection-dominated flows and in the
diffusion dominated limit for equal-order interpolation of velocity and

pressure (see Hughes et al. [5]).  A stabilized method, as described in
Taylor et al. [3] and Whiting and Jansen [2], is utilized to address
these deficiencies of Galerkin's method.  Furthermore, in order to
express the displacement field iu  in the integral of the solids stresses
appearing above, the Newmark family of methods is used to express
this field in terms of velocities and accelerations.  We do this in a
manner consistent with the α - method used for the time integration of
the nonlinear system of ordinary differential equations derived from
the stabilized counterpart of equation (7).

Membrane formulation
The characterization of the vessel wall membrane behavior is

achieved by using a new coordinate system ( ), ,r s ζ  and triangular
shape functions for the faces of the fluid tetrahedral elements lying on

sΓ  (see figure 3).  This new reference frame is used to compute the
integrals arising from the weak form of the solid (see equations (6) and
(7)).

Figure 3.  Diagram of a typical boundary element showing
the set of shape functions used to characterize the fluids

domain (left) and the solids domain (right)

CONCLUSIONS
A new method for blood flow-vessel wall interaction has been

derived.  The computational cost should be comparable to the rigid
wall theory, since only a few new boundary integrals have to be
computed.   In addition, the changes with respect to a rigid wall
formulation are relatively easy to incorporate into a standard rigid wall
finite element program. This method could result in improved
descriptions of velocity and pressure fields at relatively low cost.
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