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INTRODUCTION
          The conversion of three-dimensional (3D) images to finite
element (FE) models has important applications in medicine and
biology, including studying processes such as blood flow, muscle and
bone movement, and cellular transport.  An important part of such a
modeling process is the description of the spatial computational
domain; typically, the spatial domain is broken up into small volume
elements, known as a mesh. The objective of our research is to convert
gridded 3D data into a compact, analytic, continuous (C0 or C1) Cubic
Hermite surface description.  This surface description can be
converted to the desired FE mesh using standard modeling and
meshing software. In addition, our surface description is a standard
one for computer aided design packages, so that the resulting
geometries can be easily manipulated. Though our method works for
arbitrary surfaces, the specific application we will be concerned with is
vascular modeling.
          A major impediment to the more widespread clinical use of FE
models is the time and user effort required to build them. The
impediments to automatic vascular model generation include: the
topological complexity of vascular beds, varying levels of importance
of spatial detail, and patient specific geometry. The modeling approach
described here is topology independent, easily and automatically
refinable, and largely user independent, making it ideal for a variety of
modeling applications.

Since in some domains (particularly the distal vasculature) spatial
resolution is not as important (and imaging is not as reliable), the
method has automatic means to spatially trim the 3D domain and
extend it distally with a 1D model. This feature provides a mechanism
to naturally couple downstream 1D models with the 3D domain.

MOTIVATION
Many current vascular models are based on an underlying

cylindrical topology.[1,2] That is, models are constructed as a union of
cylinders. For straight, non-branching vessels, this can be an adequate
description. However, at a bifurcation, the topology is no longer
cylindrical and such models break down. An example is shown in

figure 1, where the discontinuity in surface
derivative due to underlying topological
assumptions, is clearly visible. In addition,
current 2D based methods require an
underlying path; though algorithms exist to
automatically find a path, they necessarily
work on the entire volume; the method
described here, upon reaching a branch vessel
under a critical radius, terminates the search.
Thus, our method spares the computer time
and potential algorithmic ambiguity that could
result from processing the noisy distal
vasculature.

METHODS
A triangulated representation of the region of interest is required

as input. This can be obtained from a thresholded volume image,
output from a 3D level set simulation, or any other edge detection
algorithm and would be followed by the Marching Cubes algorithm
applied to the desired isosurface. Note that the triangulated input
surface could be much larger than the desired surface sub-piece of
interest since it may have hundreds of branch vessels and other
structures (such as a noisy dense vascular bed, or a kidney or bone)
topologically attached. The only topological input requirement is that
these attached structures occur downstream of a vessel of cutoff
radius, or upstream of the starting cut plane. Surface construction
proceeds in a number of steps, each of which will be described below.

Step 1: Surface Isolation and Data Structure Generation
The user selects an inlet plane, thus selecting a surface from all

surfaces returned by marching cubes, and severing the desired
downstream vasculature from all upstream structures. The user also
selects a patch radius (Rp) and vessel radius cutoff (Rp < .5*Rc). Note
that this is the only user intervention required for the entire fitting
process; however, if other cutting planes are needed (large branch
vessels/ other inlets) these can be chosen as well.
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The first step proceeds by covering the surface with patches of
radius 8*Rc. The procedure starts by determining the inlet curve
(intersection of cutting plane with triangulated surface) and its length
(L) and then dividing into L/( 8 * Rc) vertex points, separated equally.
Starting at each vertex point, a Fast Marching Method [3] is used to
expand the solution to the Eikonal Equation (which gives distance
from vertex to a point on the surface, as traveled along the surface) up
to a distance R. Since the connectivity of triangles is not known a-
priori, when patches are grown, their topologically connected
neighbors are determined, and a connectivity structure for the surface
is updated. New vertex points are chosen on the “free edges” (those
which touch only one patch) of the current patch network. Patches are
not expanded past cut planes. After a patch is added, its circumference
is checked to make sure the patch is homeomorphic to a disk. If not,
the vessel has a circumference less than 2* 8 * Rc, so that its “radius”
is less than Rc; thus, the vessel should be trimmed by a cutting plane.
After completion of this step,  a structure like figure 2, but with larger
patches, is generated; the result is an isolated trimmed surface whose
connectivity and normal is known.

Step 2: Voronoi Diagram Generation
The inlet curve (intersection of cutting plane with triangulated

surface) and its length (L) are determined and then divided into L/ Rp

vertex points, separated equally. Interior points, selected at random but
which are not part of an existing
patch, are grown next. Patch growth
is similar to the preceding step but
with radius Rp. After a patch is
added, its circumference is checked
to make sure the patch is
homeomorphic to a disk. If not, new
patches (of lesser radius) are added
inside the offending patch until all
homeomorphisms are disk-like.
Surface curvature (_1) is used to
locally reduce Pr , if needed, thus
reducing frequency of such breakdowns, and providing automatic
surface refinement.  The algorithm completes when the surface is
completely covered with patches and 1) every vertex in triangulation
shares three or less patches, 2) patches share at most one edge with
every other patch. The result of this step for the pulmonary trunk is
shown in figure 2.

Step 3: Generate Edges
The rationale for the above careful construction of the Voronoi

Diagram is that the dual to the Voronoi diagram is the Delaunay
triangulation. That is, by connecting each of the vertices in the
previous step across shared edges, we have a Delaunay triangulation.
The edges we have chosen are the geodesics between patch vertices,
and they can be calculated by either
streamline integration of the Eikonal
Equation solution, or a simple initial
vertex descent along Eikonal
solution followed by segment length
m i n i m i z a t i o n .  S t r e a m l i n e
integration, while slower, produces
smoother curves.

Once the geodesic paths are
known, they are fit to cubic Hermite
line segments using an adaptive least
squares method applied to the nonlinear parametric curve. Fitting

proceeds by fixing the endpoints, and solving for the tangent vectors
that minimize the distance between N equally spaced points on the
geodesic and the cubic Hermite curve. Each fit proceeds iteratively,
with a least squares fit followed by a Gauss-Newton minimization of
parameter values for the N points. The result of this step is shown in
figure 3.

Step 4: Fit Tensor Product Surface Patches
At this point, the triangles could be
surface fit; however, many
commercial mesh algorithms require
square input patches and so triangles
are paired edgewise to generate
squares (except for a few “leftover”
triangles treated as degenerate
squares). The cubic edges from the
previous step are used directly as
data for a bicubic hermite tensor
product patch. Twist vectors are set
to zero, thus producing a Ferguson
patch. This patch is easily converted
via matrix multiplications to Bezier or B-spline forms if desired. The
completed cubic Hermite surface is shown in Figure 4. This surface is
easily input into a mesh generator: after the “open” ends are capped
with planar triangular patches, the surface is unioned and then meshed.

One Dimensional Extensions
By using the Eikonal

equation on the distal
v a s c u l a t u r e ,  a  1 D
representation of the distal tree
can be obtained by tracking the
topology of the “rings”
generated by the Eikonal
equation. If these rings split
into two, then a vessel has
branched. Initially, the center
points of the rings are used as
nodes in a 1D path. At each node, the minimal circumferential path is
calculated, and from this the area is calculated and the node
recentered. A 1D extension structure (corresponding to one of the
trimmed branches of figure 2) is shown in Figure 5.

DISCUSSION
Further work will be directed toward application of the method to

complex CT and MR 3D data sets including: the Circle of Willis,
complete pulmonary tree,  and congenital vascular disease cases.
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