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INTRODUCTION 
 Active joint torques are the primary stabilizing factor in dynamic 
motion.  However the rate, timing, phasic behavior and amplitude of 
the joint torques necessary to achieve stable performance are difficult 
to establish.  Mochon [3] introduced a Ballistic Gait model, 
demonstrating that the swing phase of walking can be successfully 
achieved using an unpowered multilink pendulum.  To quantify 
dynamic walking stability, McGeer [2] implemented a two-segment 
pendulum-walker and observed that limit-cycle stability was intrinsic 
to the passive mechanics of multi-stride downhill walking.   To assure 
continuous walking, periodic energy input is necessary to maintain 
stable locomotion.  In McGeer’s study this input energy was achieved 
by walking downhill thereby limiting the applicability of the analyses.  
Step length and speed, for a given mechanical configuration (hip and 
leg masses and leg length), were a function of the slope, i.e. added 
energy rate.  However, to achieve stable walking dynamics on level 
ground active input energy must be applied to the forward-dynamic 
simulations.  
 Virtual slope control of active bipedal walking introduced the 
concept that walking can be controlled on level ground in a manner 
that simulates downhill passive walking.  Note that no active joint 
torques are required for downhill walking stability but gravitational 
joint torques are quantifiable.  Recognizing that passive downhill 
walking is dynamically stable, then virtual slope control must achieve 
stable walking dynamics in active bipedal systems.  This was validated 
using a two-segment pendulum walker, and provided additional 
benefits wherein the step-length and speed were explicitly controlled 
by selecting the appropriate virtual slope [4]. 
 The nonlinear controller resulted in a large bias torque τ0 with 
small variations based on the joint angles, θ, throughout each stride.  
Hence, we hypothesized that a simple linear controller can be used to 
apply these active joint torques and maintain stable dynamics. 

τ = τ0 - G θ (1) 
where τ is the vector of joint torques applied at the ankle and hip of the 
pendulum-walker.  The bias torque, τ0 and linear feedback gain, G, are 

functions of virtual ground slope and can be used to explicitly control 
step-length and walking speed.  The goals of this study were to 
implement the linear, virtual-slope, control system for joint torques 
then demonstrate controllability of step-length and stability by means 
of forward-dynamic simulation of the pendulum-walker.  
 
METHODOLOGY 
 A forward dynamic model was 
successfully developed and used to 
quantify stability and define the initial 
conditions associated with the region of 
stability [1].  The simulation represents a 
2-dimensional knee-less walker including 
two legs of length L and mass ML, joined 
by a revolute joint at the point mass of the 
head-arms-trunk, MH (Figure 1).  
Anthropomorphic data including segment 
lengths, mass, and mass distribution were based upon physical 
attributes of an average adult male.  During walking only one foot is in 
contact with the ground at any time.  Ground clearance of the swing-
leg is ignored because simple mechanisms such as prismatic joints are 
readily established that do not influence walker dynamics.  Movement 
dynamics were determined from two, coupled, nonlinear, second-order 
differential equations of motion describing a double-pendulum with a 
pivot at the stance foot.  The collision at foot-strike was represented as 
a plastic collision and the transition stage at foot-strike was assumed 
instantaneous, i.e. no double-support period.  Angular velocities before 
and after foot strike were related by conservation of angular 
momentum as described by Goswami [1].  
 Gravitational joint torques, τ = [τAnkle, τHip]T, of the passive 
pendulum-walker can be expressed in terms of the leg angles, θS and 
θN, and ground slope γ, the gravitational constant g, and a mass matrix. 
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Figure 1. Compass Model
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Clearly, on level ground surfaces active joint torques, τ, can be applied 
that simulate walking down a virtual slope, γV.  Natural dynamic step-
length and speed of a passive walker are functions of ground slope [2], 
and can be approximated as (solid line in Figure 2) 
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where stride-length is dictated by leg angle at foot strike, θ0, and β is a 
function of radius of gyration of the legs.  We have previously 
demonstrated that step-length and walking speed can be explicitly 
controlled by appropriately specifying virtual slope, γV for a desired 
foot strike angle θ0, using a similar nonlinear active controller on 
downhill, level and uphill grades [4].  For improved simplicity the 
active virtual torque control (eqn 2) can be linearized in leg angle θ = 
[θS, θN] to  the form of control equation (eqn 1) with coefficients τ0 
and G that are functions of desired step-length, i.e. virtual slope, 
  G = ½ g M(cos(γV)-1),       τ0  = g Mcos(γV) (4) 
where M is the mass matrix in equation 2.  Substituting equation 3 into 
the control parameters the linear system can be designed to walk at 
pre-specified step-lengths and speeds. 
 Analysis of limit cycle stability for the forward-dynamic model 
was performed numerically as described in the literature [1,2].  
Briefly, initial state of the system at step qk following from the initial 
state at step qk = f (qk-1).  If the state is perturbed ∆q then a Taylor 
series representation of the response is described as 
  f(qk-1 + ∆q) = qk + ∆q ∇f (5) 
where ∇f is the gradient of the stride function.  The perturbed 
trajectory converges toward a stable steady state behavior if the 
Eiganvalues of ∇f are less than one.  By introducing a perturbation ∆q 
to each of the state variables at qk-1 and observing the response qk a 
numeric representation of ∇f is achieved to quantify stability.  
Forward-dynamic simulation of the actively powered pendulum-
walker was implemented in MATLAB (Natick, MA) and tested for its 
ability to control step-length and stability using the linear controller. 
 
RESULTS 
 A linear feedback controller for active ankle and hip torques 
based on passive downhill walking was designed to achieve the natural 
walking behavior of a bipedal pendulum-walker.  The behavior of the 
walker when controlled through active joint torques with virtual slope 
γV, was nearly indistinguishable from the natural dynamics of a 
passive pendulum-walker at an equivalent downhill ground slope.  The 
equilibrium stride length of the linear controller varied less than 0.6% 
of the non-linear stride length, and the angular trajectories varied less 
than 0.15% and 0.67% for the ankle and hip respectively. This natural 
behavior of the actively controlled walker was independent of the 
actual ground slope; even uphill walking was readily achieved. 
 Stable gait dynamics were empirically recorded from the active 
behavior of the linear, virtual-slope pendulum-walker.  Eigenvalues 
were relatively insensitive to virtual slope or ground slope for small 
state perturbations.  However, the nonlinear stability of the governing 
equations and controller was evident by virtue of the fact that the 
eigenvalues increased with state perturbation amplitude.  Moreover, 
the stability was more sensitive to virtual slope or ground slope when 
larger perturbations were investigated.  Clearly the stability is limited 
in extent, observable from eigenvalues that exceed one.  Nonetheless, 
within reasonable limits the results demonstrate the linear virtual slope 
active controller achieved dynamically stable gait patterns in the 
pendulum-walker.  The maximum perturbation magnitude for which 
the walker remained stable varied less than 0.79% between the non-
linear and linear control.   
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Figure 2: Comparison of Resulting Step-Lengths  

CONCLUSIONS 
 Previously the virtual slope method has been implemented to 
control a simple bipedal walker in a stable manner while still allowing 
for the natural motion based on the natural dynamics of an inverted 
double pendulum.   The purpose of this research was to explore the 
extent to which this virtual control can be simplified.  Linearization is 
the first obvious step in the simplification process.  This results in a 
controller based on a large bias torque component, τ0, and a smaller 
feedback gain, G.  Both control components are based solely on the 
desired step-length of the model.  Linearization errors become 
significant at 10°-15° while in this model peak leg angles were 
observed at less than + 19°.  However, the feedback gain, G, is less 
than 5% of the bias torque, τ0, for small virtual slopes (equation 4).  
Thus, the linearization errors do not adversely affect performance of 
movement trajectories or stability. 
 Due to the similarities of the model behavior using both the non-
linear and linearized torque control, the linearized control is a 
reasonable simplification and replacement for the non-linear control.  
This is significant in that it results in less computationally intensive 
design.  Benefits can be realized in robotics where computation time is 
a significant constraint.  Moreover, modeling of biological walkers 
were the idea of a central pattern generator relies on simple basic 
controls to generate simple motion, and relies on higher level control 
feedback for fine motor control.  It is this second field which we will 
likely implement this research in the future. 
 Due to the small contribution of the feedback gain future studies 
will investigate the use of a constant joint torque.  Preliminary models 
have demonstrated stable gait patterns developed applying constant 
torque as the only input.  It is believed this is possible due to a 
naturally occurring stride length feedback [2,4]. 
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