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INTRODUCTION 
 The importance of understanding the mechanics of pulse wave 
propagation in arteries is mounting with the rising incidence of 
cardiovascular disease.  Over the past decade the greatest effort in 
theoretical modelling has been placed on modelling pulses waves as 
solitary waves.  Solitary waves are characterized by a constant speed 
and form of propagation in a uniform tube.  A study by Yomosa [1] 
has firmly established the usefulness of solitary waves in modelling 
pulse waves in arteries. 
 The approximations commonly made for the numerical solution 
of solitary waves in arteries [2] are of three types.  The first 
simplification affects the modelling of the artery as a shell or 
membrane in the large deformation regime.  Invoking the �long-wave� 
character of the solution as justification, the axial displacement the 
solitary wave induces on the artery is neglected.  This action 
unnecessarily rigidifies the elastic response of the artery, but is done to 
simplify the governing equations to permit certain numerical 
techniques to be applied more easily.  The second simplification 
involves the numerical technique directly, which usually consists of a 
reductive perturbation technique [3], which results in a solitary wave 
solution for the first-order approximation.  Invoking again the long-
wave property, it is claimed that this first-order solution directly 
represents the exact solution.  The third simplification involves the 
fluid model of the blood and its interaction with the artery wall.  
Generally, the blood is assumed to be inviscid and the mass and 
momentum balances are averaged over the artery diameter.  The fluid-
structure interaction is eventually translated into an effective normal 
pressure acting on the artery wall. 
 Although these simplifications are coherently supported by 
specific applications, each of these approximations deserves critical 
study.  In previous papers [4,5], the reasons for abandoning the 
reductive perturbation technique were presented and an approach 
where the governing equations are considered directly, with no 
recourse to approximation, was presented.  For a one-dimensional 
example (no axial displacements), it is shown that the wave amplitude 
for a given speed is obtained by simply finding the root of an algebraic 

equation.  The shape of the solitary wave is then found through an 
integration of the field equations to any degree of accuracy.   
 This paper will describe a novel procedure for incorporating the 
axial displacement for the application of the direct solution approach. 
 
GOVERNING EQUATIONS 
 The consideration of the axial displacement leads to a coupled 
system of non-linear differential equations, rather than just one 
equation seen in the one-dimensional case.  The artery is modelled as 
cylindrical membrane representing a large blood vessel.  The exact 
non-linear governing equations for a tube were derived by Epstein and 
Johnston [6] and are given by the following relationship, 

 [σ1(1+u′)/((1+u′)2 + w′2)]′ - (p/h)(1 + w/R)w′ = ρ ü (1) 

 [σ1w′/((1+u′)2 + w′2)]′ - σ2/(R+w) + (p/h)(1 + w/R)(1+u′) = ρ  (2) w&&

where u and w are the axial and radial displacements, σ1 and σ2 are the 
axial and radial stresses, p is the normal wall pressure, h is the 
undeformed wall thickness, R is the undeformed artery radius and ρ is 
the density of the artery.  The primes (') represent derivation with 
respect to axial position, x, and the dots (¨) represent the derivative 
with respect to time.  The governing equations for the fluid must also 
be considered.  A one-dimensional fluid model is again considered 
here, where the governing equations are given by, 

  + vw& fw' + 1/2(R + w)vf' = 0 (3) 

 ρf(  + v
fv& f vf') + p' = 0 (4) 

where vf  and ρf are the fluid velocity and density.  This system of 
equations now completely defines the fluid-structure interaction that 
occurs as a solitary pulse wave travels through an artery.   
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SOLUTION APPROACH 
 In a typical problem, the artery is assumed to be uniformly 
prestressed, while the fluid moves at a constant speed vf∞.  It is upon 
this background state that the solitary pulse travels.  We consider a 
traveling wave and seek a solution of the form 

 u =  u(x,t) = u(x � ct) = u(ξ) (5) 

 w = w(x,t) = w(x � ct) = w(ξ) (6) 

where c is the wave speed and ξ = x � ct.  We can now substitute 
equations (5) and (6) into equations (1), (2), (3) and (4), leaving: 

 [σ1(1+u′)/((1+u′)2 + w′2)]′ - (p/h)(1 + w/R)w′ = ρcu′′ (7) 

[σ1w′/((1+u′)2 + w′2)]′ - σ2/(R+w) + (p/h)(1 + w/R)(1+u′) = ρcw′′ (8) 

 (vf  � c)w′ + 1/2(R + w)vf' = 0 (9)  

 ρf(vf �c)vf' + p' = 0 (10) 

It is a fortunate circumstance that equations (9) and (10) can be 
integrated exactly to obtain an explicit connection between pressure 
and radial displacement.  A straightforward integration yields 

 p = p∞+ (1/2)ρf(c - vf∞)2[1-(R /(R + w))4] (11) ] (11) 

where w∞, p∞, and vf∞ are known conditions at infinity.  This rather 
sophisticated pressure-displacement coupling could be substituted into 
equations (7) and (8), producing a two equations in terms of w and u 
and their derivatives. 

where w∞, p∞, and vf∞ are known conditions at infinity.  This rather 
sophisticated pressure-displacement coupling could be substituted into 
equations (7) and (8), producing a two equations in terms of w and u 
and their derivatives. 
  
Variational FormulationVariational Formulation 
 By casting this problem in a variational framework, it is possible 
to find explicit first integrals of the governing equations.  The first 
integral then allows the speed, amplitude and shape of the solitary 
wave to be determined using the direct solution approach [6]. 
 A variational formulation is found by searching for a Lagrangian 
density whose associated Euler-Lagrange equations are (7) and (8) 
with p given by (11).  It can be verified that the function 

L = (1/2)ρc2(u'2 + w'2) - Σ(u,w)  

   + ((1 + u')(R + w)2/2hR)[p∞+ (1/2)ρf (c - vf∞)2(1 + (R/(R  + w))4)] (12) 
 
is the Lagrangian for the governing equations.  Σ(u,w) is the strain-
energy density for the artery. 
 Using the derived Lagrangian, we can exploit the theorem of 
Noether to find first integrals for the governing equations.  From 
Noether�s Theorem, we find that two first integrals can be found from 
the functions 

 ∂L/∂u′ = C1 (13) 

 L � (∂L/∂u′)u′ -  (∂L/∂w′)w′ = C2 (14)   

By executing equations (13) and (14) on equation (12) we find that the 
first integrals can be represented as 

 F(u′, w, w′2) = 0 (15) 

 G(u′, w, w′2) = 0 (16) 

The implicit function theorem allows us to eliminate u′ from (15) and 
(16) and to write the result as a function of the form 

 w′2 = fc
 (w) (17) 

 For a solitary wave solution to exist, equation (17) must have a 
double root at zero and single real root at w = wmax.  If these roots can 
be found, then wmax is the amplitude of a solitary.   The value of u′max 
is found by substituting w′2 = 0 and w  = wmax into either (15) or (16) 
and solving for u′.  The shape of the solitary wave can then be found 
by simple numerical integration of the original governing equations 
with w = wmax and u′ = u′max as the initial conditions.  
 
Numerical Example 
 We begin this example by selecting a representative wave speed 
of c = 7, which corresponds to the case considered by Demiray [2] and 
Epstein and Johnston [4].  We set the initial prestrains of the artery to 
1.2 in the radial direction and 1.5 in the axial direction.  The strain 
energy density function Σ, is chosen to be the D1 equation for arteries 
used by Demiray [2].   Substituting this into the governing equations 
and determining the variational formulation, we find a solitary wave 
with the shape shown in figure 1.  
 

 
Figure 1. Calculated shape of the solitary wave 

 
CONCLUSIONS 
 By considering the governing field equations directly, the speed 
and amplitude of solitary waves can be found by simply finding the 
roots of an algebraic equation.  The shape of the wave is found 
through a simple numerical integration.  This approach is also 
applicable in the large deformation regime. In spite of its extra 
complexity, the variational formulation with its attendant conserved 
quantities permits a solution to the exact equations to be obtained.   
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