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 Tendons are densely packed
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material properties are attributed
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When the tendon is damaged 
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but transplantation is limited by 
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METHODS 
 Primary rat tail tendon fibrob
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cell layer becomes confluent, th
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ULTS AND DISCUSSION 
The stress-strain response of the constructs resembles the non-
r behavior of immature tendons. (Figure 1)  Between 0 - 5% 

nsion, there is a region of low stiffness after which the slope starts 
crease until the construct starts exhibiting linear behavior at a 

n of 0.11.  The construct failed at a strain of 0.2. The ultimate 
ile strength is within the same order of magnitude as embryonic 
k tendon, ~ 2 MPa.4  The tangent moduli of the chick tendon and 
onstruct, measured at the linear portion of curve, are 27 MPa and 

Pa respectively. We find that the longer the constructs are 
tained in culture, the stiffer they become, a trend which is also 
 over the course of development of tendons in utero.4 
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 Ultrastructural analysis shows that the constructs also display a 
morphology similar to immature tendons.  The collagen fibrils 
secreted by the fibroblasts are ~ 60 nm in diameter and there is an 
increased cellularity and disorganization that is characteristic of the 
early stages of tendon development.5  During maturation, the number 
of cells decreases and the collagen fibrils increase up to an order of 
magnitude in diameter.  This growth has been correlated with the 
increase in mechanical loading from in utero movements to 
locomotion after birth.6   
 We are currently in the process of developing bioreactors that 
will apply cyclic mechanical stimuli to the constructs while in culture 
over extended (months) periods of time.  We hypothesize that the 
morphological and mechanical response of the constructs will change 
when loaded while in culture, in a manner similar to developing 
tendons in vivo. 
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