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INTRODUCTION 
  
Though the early works on growth were kinematical (Thompson [1]), 
using continuum mechanics is now widely accepted for describing 
growth, remodeling, and morphogenesis (Taber [2]). Since the work of 
Hsu [3], there appeared various models of growth: Cowin and 
Hegedus [4]; Klisch et al. [5]; Kuhn and Hauger [6]; Rodrigues et al. 
[7]; Skalak [8]. Multiplicative decompositions of the displacement 
gradient underlie many publications on analytical modeling of growth. 
In this case an intermediate configuration is introduced where the free 
deformation-growth is considered in the vicinity of every material 
point. Geometrical compatibility of the grown material particles is 
ensured by additional deformation and stress. Another line of the 
growth modeling is presented by Kuhn and Hauger [6], in which tissue 
is considered as a classical mixture of solid and fluid. These authors 
show that several well-known models of the adaptive growth can be 
embedded in their general theory. 
 Mathematical description of existing approaches is rather 
sophisticated and it includes variables that may be difficult to interpret 
in simple terms and to assess in measurements. In the present work a 
simple phenomenological theory of growth is formulated based on two 
measurable variables- displacements and mass densities. It is assumed 
that deformation and mass flow can describe growth of living tissues. 
The complete law of mass balance is coupled with the law of 
momentum balance. A constitutive model reflecting the physical 
similarity between thermal expansion and growth supplements these 
field equations. As in the case of the classical thermoelasticity the 
growth process is assumed to be quasi-static and small deformations 
are considered only. As a consequence of the imposed restrictions we 
obtain the uncoupled mass flow – deformation problem, which is 
almost entirely analogous to thermoelasticity. The proposed theory is 
examined by modeling growth of living cylindrical and spherical 
bodies. It is shown that the theory accommodates materials that can 
freely and homogeneously grow without generating stresses. 
 

ANALYTICAL MODEL OF GROWTH 
  
In spatial description the governing field and constitutive equations 
can be written as follows: 
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where ρ  is mass density; ψ  is a vector of mass flow; ξ  is mass 
supply per unit volume; v is velocity; σ  is the Cauchy stress tensor; b 
is a vector of body forces per unit mass; F is the deformation gradient. 
Equations (1), (2), (3) represent balance of mass, linear and angular 
momentum accordingly, while equations (4), (5), (6) are constitutive 
relations of simple growing materials. 

It should be emphasized that the full-scale local mass balance is 
considered in Eq. (1). The first term on the right hand side of this 
equation represents mass diffusion. This term manifests continuum. 
Dropping this term from Eq. (1) is analogous to dropping the 
divergence of the stress tensor from Eq. (2): in both cases we would 
get a collection of material points instead of a continuous medium. 
The vector of mass flow ψ  appears after applying Cauchy tetrahedron 
argument to the mass supply per unit surface nψ ⋅=φ , where n is a 
unit normal to the surface. 

In order to specify the described general framework analogously 
to the classical thermoelasticity the following restrictions are imposed: 
(a) the process is quasi-static, i.e. time-dependence is ignored; (b) 
deformations are small and body forces are ignored. The first 
restriction leads to the following mass and momentum balance laws: 

0div =+ξψ , 0σ =div   (7,8) 

There is no difference between the spatial and material description 
because of the second restriction. 
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 Introducing the infinitesimal strain measure as a symmetric part 
of the displacement gradient 2/)( Tuuε ∇+∇= , we define the 
following constitutive equations: 
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where λ and µ  are the Lame coefficients; δ  is the second-order 
identity tensor. 
 Increasing parameter of mass supply 0>ω  is analogous to a 
quasi-static mechanical load. In contrast to the latter, however, ω  is 
controlled by the tissue itself and its proper determination requires 
experiments. The dimension of ω  is a unit of mass per volume and 
time. Time is not involved directly in quasi-static problems and can be 
replaced by some conditional units as it was done with Newtons per 
volume for the body forces. 
 The coefficient of growth expansion 0>α  determines how much 
the relative volume changes for a given increment in mass density. Its 
dimension is an inverse of a unit of mass. 
 The mass conductivity of solid 0>β  determines how much the 
mass supply changes for a given increment of the gradient of mass 
density. Its dimension is a unit of mass supply time length per mass 
density.    
 The coefficient of mass supply 0>γ  reflects the resistance of the 
tissue to accommodate new mass for growing mass density. The 
second term on the right-hand side of Eq. (11) ‘brakes’ mass supply 
when the density grows. The dimension of γ  is the dimension of ω  
per a unit of mass density. 
 It is worth noting that all these coefficients are generally 
inhomogeneous and depend on x. 
 The similarity between the two first constitutive laws of growth 
and thermoelasticity is obvious after replacing the mass density 
increment by the temperature increment; the mass flow vector by the 
vector of heat flux; the coefficient of growth expansion by the 
coefficient of thermal expansion; and the mass conductivity of solid by 
the thermal conductivity of solid. In this case Eq. (9) is nothing but the 
thermoelastic generalization of the Hooke’s law, and Eq. (10) is just 
the Fourier law of heat conduction (see Boley and Weiner [9]). The 
constitutive law analogous to Eq. (11), however, is usually absent in 
thermoelasticity because of the lack of volumetric heat sources. The 
thermoelastic analogy allows better understanding parameters of the 
growth model. The vector of mass flow is analogous to the vector of 
heat flux. We feel the heat flow by changing temperature without 
directly defining what the heat is. The same is true for the mass flow. 
We ‘feel’ it by changing mass density without directly defining what it 
is.  
 Substituting Eqs. (10) and (11) in (7) and assuming const=β  
we obtain: 

02 =+−∇ ωγρρβ   (13) 

Boundary conditions on the body surface take form ρρ =  or 
ψψ =∇= ρβ  where the over barred quantities are given. These 

quantities should be fitted from experiments.   
Substituting solution of Eq. (13) in Eqs. (9) and (8) it is possible 

to find the volumetric change and the corresponding stress field. 
Though generally stresses or strains influence growth, it seems that the 
uncoupling is reasonable for small deformations. If one sets γωρ /=  
on the boundary, then the homogeneous increment of mass density is 

obtained ( γωρ /= ) and no stresses are expected for bodies without 
geometrical constraints and surface tractions. To illustrate this point 
we considered radial growth of a cylinder and a sphere within the 
developed theory. In the case of free homogeneous growth with 

const/ == γωρ , which fits Eq. (13), we obtain γωνα /)1( ru += ,  
0== θθσσ rr  for radial growth of a cylindrical living body and 

γωα /ru = , 0=== ϕϕθθ σσσ rr  for radial growth of a spherical 
living body. Here Lame coefficients are replaced by Young modulus E 
and Poisson ratio ν . Neither in the case of the free homogeneously 
growing cylinder nor in the case of the free homogeneously growing 
sphere the internal stresses appear. 
 
CONCLUSIONS 
  
The problem of establishing a simple analytical model of growth based 
on observable and experimentally measurable variables was addressed. 
For this purpose a novel theory of tissue growth was proposed. This 
theory is analogous to thermoelasticity where temperature is replaced 
by mass density. In order to solve the growth problem for the given 
living body, it is necessary first to find the distribution of mass density 
from the mass balance equation. The thermoelastic counterpart of this 
equation is equation of heat conduction. When the mass density 
distribution is known, it is possible to find deformation from the 
momentum balance accounting for the generalized Hooke’s law. The 
latter manifests close resemblance between growth and thermal 
expansion. The examples of radial free growth of a living cylinder and 
a living sphere reveal the capacity of the theory to accommodate 
materials that can grow freely and homogeneously without generating 
stresses. It is important to emphasize that only displacements and mass 
densities should be measured in order to calibrate the proposed theory. 
Recent developments of computer vision techniques combined with 
the noninvasive densitometry (based, for example, on X-ray 
techniques) will allow for the calibration of the proposed analytical 
model and its further use in the analysis of tissue growth. 
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