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a b s t r a c t

This paper studies the intrinsic connection between a generalized LASSO and a basic
LASSO formulation. The former is the extended version of the latter by introducing a
regularization matrix to the coefficients. We show that when the regularization matrix is
even- or under-determined with full rank conditions, the generalized LASSO can be
transformed into the LASSO form via the Lagrangian framework. In addition, we show that
some published results of LASSO can be extended to the generalized LASSO, and some
variants of LASSO, e.g., robust LASSO, can be rewritten into the generalized LASSO form
and hence can be transformed into basic LASSO. Based on this connection, many existing
results concerning LASSO, e.g., efficient LASSO solvers, can be used for generalized LASSO.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The least absolute shrinkage and selection opera-
tor (LASSO) [1] is one of the most popular approaches for
sparse linear regression in the last decade, which is usually
J. Duan),

u (Y.-P. Wang).
formulated as

x� λð Þ ¼ arg min
x

1
2
Jy�AxJ2þλJxJ1

� �
; ðLASSOÞ

where yARn gathers n observed measurements; AARn�p

contains p predictors of dimension n; xARp contains p
coefficients; J : J and J : J1 stand for the ℓ2- and ℓ1-norm
respectively; and λ40 is the regularization parameter,
controlling the tradeoff between the data fidelity and the
model complexity. The most attracting feature of LASSO is
the use of ℓ1-norm regularization, which yields sparse
coefficients. The ℓ1-norm regularization results in the pie-
cewise linearity [2] of the solution path fx�ðλÞjλAð0; þ1Þg
(i.e., the set of solutions with respect to continuous change
of the regularization parameter λ), allowing for efficient
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1 In general, the terms even-, over- and under-determination are
used to describe the predictor matrix A. In this paper, we borrow these
terms to characterize the regularization matrix D.
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reconstruction of the whole solution path. Based on this
property, famous path tracking algorithms such as the least
angle regression (LARS) [3] and the homotopy [2,4] have
been developed. LARS is a greedy algorithm working with
decreasing λ value. At each iteration, a dictionary atom is
selected and appended to the set previously selected, and
the next critical λ value is computed. Homotopy is an
extension of LARS, performing both forward and backward
selection of the atoms already selected.

The generalized LASSO [5] (or analysis [6,7], least mixed
norm [8]) extends the basic LASSO (or synthesis) by
imposing a regularization matrix DARm�p on the coeffi-
cient vector x:

x� λð Þ ¼ arg min
x

1
2
Jy�AxJ2þλJDxJ1

� �
;

ðgeneralized LASSOÞ
where D typically contains the prior knowledge (e.g.,
structure information) [9] about x. For example, if x is
expected to be a piecewise constant signal (i.e., implying
that its first order derivative is sparse), then D is taken to be
the first order derivative operator [10]. Some variants of
LASSO can be regarded as the generalized LASSO by forming
a structured matrix D. For example, the fused LASSO pro-
posed by Tibshirani et al. [10] imposes the ℓ1 regularization
on both the coefficients and their first order derivatives to
encourage the solution to be locally constant. When one of
the two regularization parameters is fixed, a fused LASSO
problem can be rewritten as a generalized LASSO by cas-
cading a scaled identity matrix with a first order derivative
matrix to form the D matrix. The graph-guided fused LASSO
[11,12] incorporates the network prior information into D
for correlation structure. Application of generalized LASSO
can be found in image restoration [8], visual recognition
[13], electroencephalography (EEG) [14], bioinformatics
[15], ultrasonics [16], etc.

Since the LASSO has been proposed, results concerning
the recovery condition [3,17], solution path property [18],
degree of freedom [19], model selection consistency [20],
efficient algorithms as well as software development [2,4]
have beenwidely studied. One may want to know whether
these results are applicable to a generalized LASSO pro-
blem, e.g., solving a generalized LASSO problem with a
LASSO solver. An immediate example is when D is a full
rank square (hence invertible) matrix. By a simple change
of variables u¼Dx, the original generalized LASSO pro-
blem can be transformed into the basic LASSO form with a
predictor matrix AD�1 and a coefficient vector u. There-
fore it can be solved by calling the LASSO subroutine.

Although the generalized LASSO and LASSO have been
studied from various aspects [5,7,21], their connections are
not fully explored, which is the main focus of this paper.
Elad et al. [6] showed that they are equivalent, but con-
fined the discussion to the denoising case, where A is an
identity matrix. Tibshirani and Taylor [5] showed that the
former can be transformed to the latter; however, their
method needs to introduce a matrix D0 (see Appendices),
which brings other potential questions as discussed in the
conclusion.

The paper is organized as follows: in Section 2, we
show that when the regularization matrix is even- or
under-determined with full rank conditions, the general-
ized LASSO can be transformed into the LASSO form via the
Lagrangian framework. Based on this formula, in Section 3
we show that some published results of LASSO can be
extended to the generalized LASSO. In Section 4, two var-
iants of LASSO, namely the regularized deconvolution and
the robust LASSO are analyzed under the generalized
LASSO framework. We conclude the paper in Section 5.
2. Condition and formula of transformation

The simplification of the generalized LASSO depends on
the setting of D [6]. For the even-determined case (m¼p),1

if D has full rank, by a simple change of variables u¼Dx,
the original generalized LASSO problem can be trans-
formed into the basic LASSO with a predictor matrix AD�1

and a coefficient vector u. Once the LASSO solution ûðλÞ is
known, the original generalized LASSO solution is
immediate: x̂ðλÞ ¼D�1ûðλÞ.

For the over-determined case (m4p), if we change the
variable x to u, then u has a higher dimension than x, or
higher degree of freedom. If only a solution û satisfies the
constraint DD†û ¼ û where D† is the Moore–Penrose
pseudoinverse of D, the original solution is guaranteed to
be found [6]. Therefore, the generalized LASSO under this
case cannot be transformed into a basic LASSO but a LASSO
with equality constraint [22].

We consider the under-determined case (mop). The
following Theorem 1 states that a generalized LASSO
problem can be transformed into a basic LASSO form
under some conditions.

Theorem 1. If matrixΦ¼ A
D

� �
has full column rank (implying

mþnZp), and D has full row rank (implying mrp), then
the generalized LASSO problem can be transformed into the
following LASSO form:

u� λð Þ ¼ arg min
u

1
2
Jz�HuJ2þλJuJ1

� �
; ð1Þ

where

ð2Þ

and Q 1ARn�p and Q 2ARm�p are defined from the (unique)
QR decomposition

Φ¼QR¼
Q 1

Q 2

" #
R: ð3Þ

Proof. Since Φ has full column rank, its QR decomposition
(3) is unique and the square matrix RARp�p is invertible.
Moreover, Q 2ARm�p is full row rank because D is full row
rank. (3) rereads:

A¼Q 1R; ð4Þ
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D¼Q 2R: ð5Þ

From Q TQ ¼ Ip, we have

Q T
1Q 1þQ T

2Q 2 ¼ Ip: ð6Þ

The generalized LASSO problem is equivalent to the
following constrained optimization problem:

x� λð Þ;u� λð Þð Þ ¼ arg min
x;u

1
2
Jy�AxJ2þλJuJ1

� �

subject to Dx¼ u: ð7Þ

The Lagrange function associated with (7) reads

L x;u; μð Þ ¼ 1
2 Jy�AxJ2þλJuJ1þμT u�Dxð Þ;

where μ gathers m Lagrange multipliers. The optimality
condition reads

∂Lðx;u; μÞ
∂x

¼ AT Ax�yð Þ�DTμ¼ 0;

∂Lðx;u; μÞ
∂μ

¼ u�Dx¼ 0:

From these two equations, we have the following system:

ATA �DT

D 0

" #
x
μ

" #
¼ ATy

u

" #
: ð8Þ

If matrix

M9
ATA �DT

D 0

" #
ð9Þ

is invertible, we can find the equivalent form of the gen-
eralized LASSO problem. By substituting A and D with
(4) and (5) respectively, we have

M ¼ RTQ T
1Q 1R �RTQ T

2

Q 2R 0

" #
¼ RT 0

0 Im

" #
Q T

1Q 1 �Q T
2

Q 2 0

" #
R 0
0 Im

" #
;

where ImARm�m is the identity matrix. Since R and Im are
full rank, the invertibility of M is equivalent to that of

N9
Q T

1Q 1 �Q T
2

Q 2 0

" #
:

From (6),

N ¼ Ip�Q T
2Q 2 �Q T

2

Q 2 0

" #
¼ Ipþmþ Q T

2 0
0 Im

" #
�Im �Im
Im �Im

" #
Q 2 0
0 Im

" #
:

From Woodbury's matrix identity [23, p. 141], N is inver-
tible if and only if

W9
�Im �Im
Im �Im

" #�1

þ
Q 2 0
0 Im

" #
Q T

2 0
0 Im

" #
¼

Q 2Q
T
2�1

2Im
1
2Im

�1
2Im

1
2Im

" #

is invertible. Since

det Wð Þ ¼ det 1
2Q 2Q

T
2

� �
;

and detðQ 2Q
T
2Þa0 (Q 2 is full rank), the invertibility ofW is

guaranteed, and therefore M is invertible.
From the block matrix inversion lemma [23, p. 108], we
have

W �1 ¼
ðQ 2Q

T
2Þ�1 �ðQ 2Q

T
2Þ�1

ðQ 2Q
T
2Þ�1 2Im�ðQ 2Q

T
2Þ�1

" #
:

Therefore,

N �1 ¼ Ipþm� Q T
2 0
0 Im

" #
W �1 Q 2 0

0 Im

" #
;

and

M�1 ¼ R�1 0
0 Im

" #
N �1 R�T 0

0 Im

" #

¼
R�1ðIp�Q T

2ðQ 2Q
T
2Þ�1Q 2ÞR�T R�1Q T

2ðQ 2Q
T
2Þ�1

�ðQ 2Q
T
2Þ�1Q 2R

�T ðQ 2Q
T
2Þ�1�Im

" #

¼
R�1ðIp�Q †

2Q 2ÞR�T R�1Q †
2

�ðQ †
2ÞTR�T ðQ 2Q

T
2Þ�1�Im

2
4

3
5;

where Q †
2 ¼Q T

2ðQ 2Q
T
2Þ�1. Finally, from (8) we have

x¼ R�1ðIp�Q †
2Q 2ÞQ T

1yþR�1Q †
2u; ð10Þ

and

μ¼ �ðQ †
2ÞTQ T

1yþððQ 2Q
T
2Þ�1�ImÞu:

By substituting (10) into (7), we obtain the results (1) and
(2). □

Once the solution path fûðλÞjλAð0; þ1Þg is known,
the corresponding solution path fx̂ðλÞjλAð0; þ1Þg can be
calculated according to (10).

By substituting Q 1 ¼ AR�1 and Q 2 ¼DR�1 into (2), and
utilizing

Ψ9ΦTΦ¼ ATAþDTD¼ RTR; ð11Þ
up to a few manipulations, an useful equivalent form of (2)
without QR decomposition is obtained as

ð12Þ

And from (10), x can be recovered as

x¼Ψ�1 AT �DTHT
� �

yþΨ�1DT DΨ�1DT
� ��1

u ð13Þ

Note that H has the same dimensionality as AD†, but
normally they are not equal unless Ψ is a diagonal matrix.

Remark 1. There are many real-world examples that
satisfy this condition. e.g., the total variation denoising
problem where A and D are an identity and a first order
derivative matrix, respectively. By substituting A and D into
M in (9), one can check that M is invertible, and hence
satisfies the condition in Theorem 1. Another two examples
are the regularized deconvolution problem and the robust
LASSO, which will be presented in detail in Section 4.

Remark 2. Under the case mþn¼ p, Φ is a full rank
(square) matrix. Therefore, the row vectors of Q are
orthogonal, and Q 1Q

T
2 ¼ 0. From (1) and (2), we have H ¼ 0

and the solution is obviously u¼ 0. According to (10), the
original solution is x¼ R�1Q T

1y. Note that this solution
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does not depend on λ, and the solution path
fx̂ðλÞjλAð0; þ1Þg is a singleton.
Another viewpoint is obtained by a change of variables.

Defining v¼ Rx, the generalized LASSO problem rereads

v� λð Þ ¼ arg min
v

1
2
Jy�Q 1vJ

2þλJQ 2vJ1
� �

: ð14Þ

Since the rows of Q 1 and Q 2 form an orthonormal basis, it
is obvious that the minimum ℓ2-norm least square solu-
tion v̂ ¼Q †

1y¼Q T
1y satisfies Q 2v̂ ¼ 0. This means that v̂

minimizes both the ℓ2- and ℓ1-term simultaneously.
Therefore, the cost function in (14) is equal to 0 whatever
λ40.

Remark 3. Under the case mþnop, NullðΦÞ is nontrivial,
therefore one can check that the generalized LASSO does
not yield unique solution, and there are unlimited number
of solutions fx� x� ¼Φ† y

0

� �þx0; x0ANull Φð Þg
�� with Dx� ¼ 0

and Ax� ¼ y whatever λ40.
Note that this case does not satisfy the condition in

Theorem 1 since Φ does not have full column rank. This
case serves to complete the discussion.
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Fig. 1. The frequency (in percentage) of random matrices A and D satis-
fying condition in Corollary 1 with p¼100. (a) Entries in A and D obey
normal distribution and Bernoulli distribution with parameter b¼0.1.
(b) The distributions of A and D are exchanged.
3. Extension of existing LASSO results

Since the LASSO has been intensively studied during
the last decade, many results concerning the computa-
tional issue have been published. In this section, we extend
some of them into the generalized LASSO problem.

3.1. Monotonic solution path property

Our earlier result [18, Theorem 2] shows that if
ðHTHÞ�1 is diagonally dominant, then the solution path of
the corresponding LASSO problem changes monotonically
with respect to λ. In other words, the solution path has at
most m segments. Therefore, the ‘forward’ algorithm,
LARS, yields the same solution path as the ‘forward-back-
ward’ algorithm, homotopy, and both of them can recover
the complete solution path within m iterations. Based on
this fact, the computational complexity can thus be
reduced. The following corollaries extend this result to the
generalized LASSO.

Corollary 1. If a generalized LASSO problem satisfying con-

dition in Theorem 1 also satisfies that DΨ�1DT
� ��1

�I
	 
�1

is diagonally dominant, then the complete solution path can
be recovered within m iterations of LARS and homotopy
algorithm.

Proof. When a generalized LASSO problem satisfies con-
dition in Theorem 1, it can be transformed into a LASSO
problemwith H and z being defined in (2). By utilizing Eqs.
(4), (5), (6) and (11), we have

HTH ¼ Q 2Q
T
2

� ��1
�I ¼ DΨ�1DT

� ��1
�I;

therefore, ðHTHÞ�1 is diagonally dominant. From [18], this
corollary is straightforward. □
There exist many matrices satisfying above condition.
Obvious examples are the orthogonal dictionaries like
Dirac basis or Hadamard basis. By Monte Carlo simulation,
we study the probability of random matrices to satisfy the
condition. p is fixed to 100, and for each given configura-
tion (n,m), 1000 trials A and D are generated, whose
entries obey i.i.d. normal distribution or Bernoulli dis-
tribution with parameter b¼0.1 (the probability for 1 is b,
for 0 is 1�b). The frequency of A and D satisfying condi-
tion in Corollary 1 is shown in Fig. 1. From the simulation
results, it is shown that random matrices satisfy the con-
dition when n⪢m.

When ATA forms an orthogonal design, i.e., ATA¼ I,
above condition can be further simplified to the following
corollary.

Corollary 2. If a generalized LASSO problem satisfying con-
dition in Theorem 1 also satisfies that A forms an orthogonal
design, and DDT is diagonally dominant, then the complete
solution path can be recovered within m iterations of LARS
and homotopy algorithm.
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Proof. Since D has full row rank, DDT is invertible. By
utilizing Searle's set of matrix identities [24, p. 151], we can
verify that

D IþDTD
� ��1

DT ¼ IþðDDT Þ�1
� ��1

:

When ATA¼ I, we have

ðHTHÞ�1 ¼ DΨ�1DT
� �

�I
� ��1

¼ ðDðIþDTDÞ�1DT Þ�1�I
� ��1

¼DDT

Therefore, condition in Corollary 1 can be simplified into
checking the diagonal dominance of DDT . □

Corollaries 1 and 2 show that in the best case, the
computational complexity of homotopy can reach as low
as m iterations to compute the complete solution path on
λAð0; þ1Þ. It is shown [25] that in the worst case, the
computational complexity can reach as high as ð3m�1Þ=2.
Therefore, the computational complexity highly varies
depending on the specific problem. Instead of using a
generic LASSO solver such as LARS, fast and efficient
algorithms can be developed for some specific problems.
e.g., the algorithm in [26] permits fast computation and
low storage for the regularized deconvolution problem
introduced later in Section 4.1 with α¼ 0 and β¼ �1. The
computational advantage is significant when the dimen-
sion is extremely large.

3.2. Decoupling into 1-dimensional subproblems

Efron et al. [3] and Friedman et al. [27] have shown that if
the dictionary A forms an orthogonal design (or uncorrelated
design), i.e., ATA¼ I, a LASSO problem can be decoupled into
a set of subproblems, and then solved separately.
1 β�α �αβ 0 … 0
β�α 1þðβ�αÞ2 ðβ�αÞð1�αβÞ �αβ ⋱ ⋮
�αβ ðβ�αÞð1�αβÞ 1þα2β2þðβ�αÞ2 ðβ�αÞð1�αβÞ ⋱ 0
0 ⋱ ⋱ ⋱ ⋱ �αβ

⋮ ⋱ �αβ ðβ�αÞð1�αβÞ 1þα2β2þðβ�αÞ2 ðβ�αÞð1�αβÞ
0 … 0 �αβ ðβ�αÞð1�αβÞ 1þα2β2þðβ�αÞ2

2
6666666664

3
7777777775

ð20Þ
To be more specific, when ATA¼ I the LASSO criterion
can be rewritten as

1
2 JA

Ty�xJ2þλJxJ1þyTy�yTAATy:

This shows that the p-dimensional LASSO problem can
be decoupled into p

0
1-dimensional subproblems, and each

subproblem can be solved separately. The closed-form
solution reads

x� ¼ ηλðATyÞ; ð15Þ
where ηλð�Þ is the componentwise soft thresholding func-
tion [28]:

ηλðxÞ ¼
x�λ; x4λ;

0; jxjrλ;

xþλ; xo�λ:

8><
>:

Similarly, for generalized LASSO problem the following
corollary provides a sufficient condition to guarantee
decoupling.

Corollary 3. If a generalized LASSO problem satisfying con-
dition in Theorem 1 also satisfies

DΨ�1DT ¼ 1
2 I; ð16Þ

then it can be decoupled into p 1-dimensional LASSO pro-
blems, with the following closed-form solution:

u� ¼ ηλð2DΨ�1ATyÞ: ð17Þ

Proof. Since A and D satisfy condition in Theorem 1, this
generalized LASSO problem can be transformed into a
LASSO problem, with H, z being defined in (2), and matrices
Q 1, Q 2 and R being defined in the proof of Theorem 1.
By substituting Eqs. (4), (5) and (11) into (16), an

equivalent condition reads

Q 2Q
T
2 ¼ 1

2 I: ð18Þ

Therefore, Q †
2 ¼ 2Q T

2.

From (2) and by utilizing (6), it is easy to prove that the
Gramian matrix of H is an identity matrix, i.e., HTH ¼ I, so
H forms an orthogonal design, indicating the transformed
LASSO problem can be decoupled.
Furthermore, with the help of (18), we can also prove

HTz¼ 2Q 2Q
T
1y¼ 2DΨ�1ATy: ð19Þ
Finally, by replacing A and y in (15) with H and z respec-
tively, and substituting (19), the closed-form solution
reads in (17). □

Remark 4. If ATA is invertible, by utilizing Searle's set of
matrix identities [24, p. 151], an alternative condition of
(16) reads

DðATAÞ�1DT ¼ I
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Note that this condition is stronger than (16) since for
under-determined A, ATA is not invertible.

One can check that condition in Corollary 3 fulfills
when D is a square matrix with full rank and ATA¼DTD.
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

α

β

Fig. 2. The feasible region that admits matrix (20) to be diagonal domi-
nant. The region is mirror symmetric with respect to line α¼ β, and the

curve in the south-east quadrant has expression β¼ �ðα2 þ1Þþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðα2 �αþ1Þ

p
ðα�1Þ2 .
4. Two examples on the analysis of LASSO variants

Several variants of LASSO can be unified under the
generalized LASSO framework, such as the total variation
regularized deconvolution for signal and image recovery
[29], the robust LASSO for face recognition and sensor
network [30], the adaptive LASSO for variable selection
[31], the fused LASSO for gene expression data analysis
[10], the ℓ1 trend filtering for time series analysis [32], and
the adaptive generalized fused LASSO for road-safety data
analysis [33]. In this section, the first two will be discussed.

4.1. Regularized deconvolution

Deconvolution is a challenging problem, which can be
formulated as a LASSO problem with a Toeplitz predictor
matrix. Total variation [34] is a regularization tool to
restore piecewise constant signals. This leads to the gen-
eralized LASSO form in which A is a Toeplitz matrix con-
taining the convolution kernel and D is also a Toeplitz
matrix containing the total variation kernel. For high
dimensional problems, the computation burden is a major
factor. The following theorem sheds some lights on this
issue.

Corollary 4. Let A and D be square lower triangle Toeplitz
matrices with the first column ½1; α; α2;α3;…; αn�1�T and
½1; β;0;0;…;0�T , respectively. If α and β fall within the region
displayed in Fig. 2, then the generalized LASSO problem can
be solved for all λ by the LARS and homotopy algorithm in at
most n iterations.

The total variation regularization corresponds to the
special case when β¼ �1.

Proof. According to Theorem 1, since D is invertible, this
generalized LASSO problem is equivalent to the basic
LASSO problem (1) with H ¼ AD�1. Since A is squared and
invertible, the Gramian matrix inverse reads
ðHTHÞ�1 ¼DA�1A�TDT . So in the following we will show
that this matrix is diagonally dominant.
One can check that A�1 is also a lower triangle Toeplitz

matrix with the first column as ½1; �α;0;0;…;0�T . Then the
Gramian matrix DA�1A�TDT reads as (20). In order to have
the diagonal dominance property, the following three
inequalities are required, which correspond to the first
three rows in matrix (20) (The conditions related to the
other rows are obviously implied by the third inequality):

1Z jβ�αjþjαβj;
1þðβ�αÞ2Z jβ�αjþjβ�αjj1�αβjþjαβj;
1þα2β2þðβ�αÞ2Z2jαβjþ2jβ�αjj1�αβj:

Those inequalities yield three regions in the 2D plane ðα; βÞ
whose intersection is displayed in Fig. 2. □
Corollary 4 in this paper, Theorem 2 in [18], Theorem 1
and Corollary 2 in [17] jointly show that for deconvolution
problem with total variation regularization (β¼ �1), if the
convolution kernel is high pass (�1rαo0) or all pass
(α¼ 0), but not low pass (0oαr1), the true solution can be
recovered via the generalized LASSO. If there is no total var-
iation constraint (β¼ 0), then any convolution kernel having
exponential attenuation (½1; α; α2; α3;…; αn�1�T ; �1rαr1)
admits the perfect recovery.

4.2. Robust LASSO

LASSO with the first order total variation method can
recover piecewise constant signals. However, if there are
outliers in the signal y, this approach tends to introduce
false break points. A second component signal sARn is
introduced to cope with the outliers in the observation
[30]. Since outliers are usually due to burst error, which
are assumed to obey the Laplace distribution, a second ℓ1
regularization term is incorporated into the objective
function, yielding the robust generalized LASSO as follows:

x�; s�ð Þ ¼ arg min
x;s

1
2
Jy�Ax�sJ2þλ1 JDxJ1þλ2 JsJ1

� �
:

This problem can be rewritten into a generalized LASSO
form with Arobust ¼ A; I½ �, Drobust ¼ D

0
0
τI

� �
, and xrobust ¼ x

s

� �
,

where τ¼ λ2=λ1. When Φ¼ A
D

� �
has full column rank, D has

full column rank, and τ40, one can check that

Φrobust ¼ Arobust
Drobust

h i
has full column rank, Drobust has full row

rank, and M is invertible. Therefore, from Theorem 1 the
robust generalized LASSO problem can be transformed
into a basic LASSO form.
5. Conclusion

This paper discusses the simplification of a generalized
LASSO problem into the basic LASSO form. When the
regularization matrix D is even- or under-determined
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(mrp), we showed that this simplification is possible.
Otherwise, there is no guarantee that this simplification
can be done. In the former case, optimization tools dedi-
cated to LASSO can be straightforwardly applied to the
generalized LASSO.

Tibshirani and Taylor [5] gave a simple way to trans-
form a generalized LASSO to the basic LASSO form when D
is not a square matrix (mop). As shown in Appendix A,
they introduced a matrix D0 to form a square and inver-

tible matrix ~D ¼ D
D0

h i
. This poses the question on whether

their results depend on D0 or not. Appendix B shows that
their method yields the equivalent results as ours, and
indicates that H and z in their formula do not depend on
D0. In addition, an improperly introduced D0 may incur
potential numerical error.

The proposed formula reposes directly on A and D,
therefore gives an insight into their interaction in the
generalized LASSO problem. Based on the proposed for-
mula, it is shown that existing results related to LASSO can
be extended to the generalized LASSO. Since some variants
of LASSO can be unified under the generalized LASSO fra-
mework, they can be transformed into the basic LASSO,
and hence efficient LASSO solvers can be applied for the
solution. Furthermore, under this framework, many dif-
ferent types of regression formulations such as the trend
filtering in a recent study [35] can be unified.
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Appendix A. Tibshirani and Taylor's transformation
method

Tibshirani and Taylor [5] proposed the following method
to transform a generalized LASSO when rankðDÞ ¼mop.

First a matrix D0ARðp�mÞ�p is found, whose rows are
orthogonal to these in D. Then matrix ~D ¼ D

D0

h i
ARp�p is a

square matrix with full rank, and thus invertible.
For further use, let us define ~Dx¼ Dx

D0x

h i
9 u

v

� �
with u and

v are column vectors of length m and p�m respectively,
therefore x¼ ~D

�1 u
v

� �
, and the generalized LASSO criterion

rereads

1
2 y�A ~D

�1 u
v

� 
����
����
2

þλJuJ1:

Let us also define

A ~D
�1 ¼ A1 A2½ �;

where A1 and A2 are matrices of size n�m and n� ðp�mÞ
respectively. Above criterion rereads

1
2 Jy�A1u�A2vJ2þλJuJ1: ðA:1Þ

which is a least square problem with respect to v, and the
solution is

v� ¼ A†
2 y�A1uð Þ;

where A†
2 ¼ AT

2A2

� ��1
AT
2.

Finally, by substituting v� into (A.1), the generalized
LASSO can be transformed into form (1) with

ðA:2Þ
Appendix B. The equivalence between Tibshirani and
Taylor's method and the proposed method in this paper

In this appendix, we prove that H and z in form (2) and
(A.2) are equal.

B.1. Equivalence of H

First, for further use let us define Q 09D0R
�1 and

Q 2

Q 0

" #�1

9 P2 P0
� �

; ðB:1Þ

where P2 and P0 are of size p�m and p� ðp�mÞ,
respectively.

It is easy to verify that

PT
0Q

T
2 ¼ 0; ðB:2Þ

P2Q 2þP0Q 0 ¼ I; ðB:3Þ

Q 1P2 ¼ A1;

Q 1P0 ¼ A2: ðB:4Þ
From (B.4), (6) and (B.2), we have

AT
2Q 1Q

T
2 ¼ PT

0Q
T
1Q 1Q

T
2 ¼ PT

0ðI�Q T
2Q 2ÞQ T

2 ¼ 0: ðB:5Þ
Left multiply both sides of (B.3) with Q 1, and substitute
resultant equation into (B.5), we have

AT
2ðA1Q 2þA2Q 0ÞQ T

2 ¼ 0:

Move the second part to the right side of equals sign, and
left multiply both sides with ðAT

2A2Þ�1, right multiply with
ðQ 2Q

T
2Þ�1, we have

A†
2A1 ¼ �Q 0Q

†
2:

Left multiply both sides of above equation with �A2, and
add with A1, we have

A1�A2A
†
2A1 ¼ A1þA2Q 0Q

†
2:

The left side of above equation is H in (A.2), and the right
side is equal to H in (2), since left multiply both sides of
(B.3) with Q 1, and right multiply with Q †

2 yields

A1þA2Q 0Q
†
2 ¼Q 1Q

†
2:
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B.2. Equivalence of z

To prove that z in (2) and (A.2) are equal, we have to
prove

Q 1Q
T
1�Q 1Q 2Q

†
2Q

T
1 ¼ A2A

†
2:

From (B.1), one can verify that

I�Q †
2Q 2 ¼ P0P

†
0:

Left multiply both sides of above equation with Q 1, and
right multiply with Q T

1, we have

Q 1Q
T
1�Q 1Q 2Q

†
2Q

T
1

¼Q 1P0P
†
0Q

T
1

¼ A2ðPT
0P0Þ�1AT

2 using Eq: ðB:4Þ
¼ A2ðPT

0P0�PT
0Q

T
2Q 2P0Þ�1AT

2 using Eq: ðB:2Þ
¼ A2ðPT

0ðI�Q T
2Q 2ÞP0Þ�1AT

2

¼ A2ðPT
0ðQ T

1Q 1ÞP0Þ�1AT
2 using Eq: ð6Þ

¼ A2A
†
2 using Eq:ðB:4Þ
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