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Abstract— In this study, in order to make use of complementary information from different types of data for better disease 

status diagnosis, we combined gene expression with DNA methylation data and  generated a fused network, based on which 

the stages of KIRC (Kidney Renal Cell Carcinoma) can be better identified.  It is well recognized that a network is important for 

investigating the connectivity of disease groups. We exploited the potential of the network’s features to identify the KIRC stage. 

We first constructed a patient network from each type of data. We then built a fused network based on network fusion method. 

Based on the link weights of patients, we used a generalized linear model to predict the group of KIRC subjects.  Finally, the 

group prediction method was applied to test the power of network-based features.The performance (e.g., the accuracy of 

identifying cancer stages) when using the fused network from two types of data is shown to be superior to using two patient 

networks from only one data type. The work provides a good example for using network based features from multiple data types 

for a more comprehensive diagnosis.  
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——————————   �   —————————— 

1  INTRODUCTION

HE American Cancer Society’s most recent estimate for 

kidney cancer in the United States for 2015 indicates that 

about 61,560 new cases of kidney cancer (38,270 in men and 

23,290 in women) will occur and about 14,080 people (9,070 

men and 5,010 women) will die from the disease. Kidney can-

cer is among the 10 most common cancers in both men and 

women. Overall, the lifetime risk for developing kidney cancer 

is about 1 in 63 (1.6%). Renal cell carcinoma (KIRC) is by far 

the most common type of kidney cancer. About 9 out of 10 kid-

ney cancers are renal cell carcinomas [1].  

The stage of a cancer describes how far it has spread. The 

treatment and prognosis depend, to a large extent, on the can-

cer’s stage. The stage is based on the results of the physical 

exam, biopsies, and imaging tests (CT scan, chest x-ray, PET 

scan, etc.). Knowing the stage of cancer can be a factor in de-

ciding treatment and can also help your doctor determine if 

your cancer might be due to an inherited genetic syndrome. 

Recent multi-omics data and clinical information emerging 

from cancer patients have provided unprecedented opportunities 

for investigating the multilayered genetic basis of disease in 

order to improve the ability to diagnose treat and prevent can-

cer. The Cancer Genome Atlas (TCGA) [2] is a large-scale col-

laborative initiative to improve our understanding of the multi-

layered molecular basis of cancer. While TCGA has opened 

numerous opportunities for revealing new insights on the mo-

lecular basis of cancer [2-5], it is imperative to address the issue 

of integration with the available multi-omics data to better un-

derstand cancer phenotypes, and thereby provide an enhanced 

global view of the interplay between different levels of data and 

knowledge. 

Recently there has been much research exploring the poten-

tial of connectivity networks of patients for classification in 

biomedical field [6-8]. However, there is little research on net-

work construction and analysis from multiple types of biologi-

cal data.  In a topological sense, a network is a set of nodes and 

a set of directed or undirected edges between the nodes. Net-

works focus on the organization of the system rather than on the 

system’s components. So we can exploit the features of net-

works to classify disease subtypes and predict clinical out-

comes.  

In the past few decades, many researchers have investigated 
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the classification of cancer using one type of biology data [9-

12]. In our current study, we integrated two types of data: gene 

expression and DNA methylation data to construct a fused net-

work for classifying the KIRC patients. At first, for each type of 

data, we constructed a network and then used a network fusion 

method to combine the two single networks. Therefore, we got 

three networks, including two networks from each type of data 

and their fused one.  Based on the three networks, we predicted 

the stage of KIRC for a new subject.  

The remainder of the paper is structured as follows. Section 

2 describes the collection of datasets and provides the details of 

important steps such as feature selection, network fusion, and 

graph-based label prediction used in our study. In Section 3, we 

present the experimental results, including performance com-

parisons with other network-based label prediction method.  In 

the last section, we conclude the study and give prospects on 

our future work. 

2 MATERIALS AND METHODS 

In this section, we will first introduce the datasets used in our 

study and its preprocessing. Then we will describe three critical 

steps used in our approaches. An important method is similarity 

network fusion (SNF), which is used to fuse two or more net-

works into one network. Another approach is sparse partial least 

squares regression (SPLS) for feature selection. And the last 

approach is our network-based LASSO Label Prediction 

(NLLP) method, which is used to predict the stage of KIRC in 

our study. 

 

2.1 The Cancer Genome Atlas KIRC Data Retrieval 

 Clinical and pathological features, genomic alterations, DNA 

methylation profiles, and RNA and proteomic signatures have 

been evaluated in KIRC studies and are available from TCGA. 

We used more than 500 primary nephrectomy specimens from 

patients with histologically confirmed KIRC that conformed to 

the requirements for genomic study defined by the Cancer Ge-

nome Atlas (TCGA).  We used the TCGA data portal to down-

load gene expression profiles, DNA methylation expression and 

clinical data. For all of three types of data, we used the level 3 

data set.  After preprocessing, we got 66 samples with these two 

types of data.  72 samples were obtained for the gene expres-

sion data; 130 samples were obtained for the DNA methylation 

data re are. There are only 66 samples for both types of data.  

 

2.2 Methods  

2.2.1 Similarity Network Fusion 

Here, we employed the similarity network fusion (SNF) method 

proposed by Wang et al.[13], for which an R package 

SNFtool[13] is also available. The SNF is inspired by the multi-

view learning framework, which was developed for computer 

vision and image processing applications[14]. The SNF con-

structs fused networks of samples by comparing samples’ mo-

lecular (or phenotypic) profiles. The fused networks are then 

used for classification and label prediction. 

Suppose we have n samples (e.g., patients) and m measure-

ments (e.g., DNA methylation). A patient similarity network is 

represented as a graph G = (V, E). The vertices V correspond to 

the patients {x1, x2,…, xn} and the edges E are the weighted 

value of the similarity between patients. The edge weights are 

represented by an n × n similarity matrix W, with each ),( jiW  

indicating the similarity between patients xi and xj. 
),( ji xxρ
 is 

represented as the Euclidean distance between patients xi and xj.  

A scaled exponential kernel is used to determine the weight of 

the edge: 

���, �� = exp	�−
����,���

���,�
�                              (1) 

   where μ is a hyperparameter that can be empirically set and 

ji ,ε
is used to overcome the scaling problem.  Here we define 
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where )),(( ii Nxmean ρ is the average value of the distances be-

tween xi and its neighbors. μ is recommended to have the val-

ue  in the range of [0.3, 0.8].  

      To calculate the fused matrix from multiple types of meas-

urements, we applied a full and sparse kernel on the vertex set 

V. The full kernel is a normalized weight matrix P=D
-1

W, where 

D is the diagonal matrix with entries ∑=
j

)j,i(W)i,i(D
, so that 

∑ =
j

1)j,i(P . 

Let Ni represent the set of xi’s neighbors including xi in G. 

Given a graph G, K nearest neighbors (KNN) is used to meas-

ure the local affinity as follows: 
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Note that P carries the full information about the similarity of 

each patient to all others whereas S only encodes the similarity 

to the K most similar patients for each patient. The algorithm 

always starts from P as the initial state and uses S as the kernel 

matrix in the fusion process for both capturing local structure of 

the graph and computational efficiency. 

We first calculated the status matrices P
(1)

 and P
(2)

 from two 

input similarity matrices; then the kernel matrices S
(1) 

and S
(2) 

were obtained as in Equation (3). 

Let  
(1)(1)

0t PP == and  
(2)(2)

0t PP == represent the initial two status matrices 

at t=0. The key step of SNF is to iteratively update the similari-

ty matrix corresponding to each data type as follows: 

T)1()2(

t

)1()1(

1t )S(PSP ××=+
                           (4)                                                                          
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t
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                          (5)                                                            

where 
(1)

1tP +  is the status matrix of the first data type after t itera-

tions, while 
(2)

1tP +  is the similarity matrix for the second data type. 

This procedure updates the status matrices each time, generat-

ing two parallel interchanging diffusion processes. After t steps, 

the overall status matrix is calculated as follows 

2

PP
P

)2(

t

)1(

t)c( +
=                                         (6)                                                                                

The input to SNF algorithm can be feature vectors, pairwise 

distances, or pairwise similarities. The learned status matrix P
(c)

 

can then be used for clustering and classification. In this work, 

we mainly focus on clustering and label prediction.  

2.2.2 Sparse Partial Least Squares Regression  

We used sparse partial least squares regression (SPLS)[15] to 

do feature selection.  The main principle of this methodology is 
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to impose sparsity within the context of partial least squares and 

thereby carry out dimension reduction or variable selection. 

SPLS performs well even when the sample size is much smaller 

than the total number of variables. An additional advantage of 

SPLS is its ability to handle both univariate and multivariate 

responses. 

Chun H[15] and  Efron et al.[16] formulated the estimation 

of the SPLS direction vector by imposing an additional con-

straint L1 on the objective function in the following problem;  

λ≤≤≤≤====
1

,1..max wwwtsMww TT

w                
(7) 

where XYYXM TT= and λ determines the level of sparsity.  

To get a sparse enough solution, authors in [15] reformulated 

the SPLS  by generalizing the regression formulation of 

SPCA[17]. This formulation promotes exact zero property by 

imposing L1 penalty on a surrogate of direction vector (c) in-

stead of the original direction vector (α ), while keeping α  

and c close to each other: 

2211
,

)())(1(min cccMckMk TT

c
λλαααα

α
++++++++−−−−−−−−−−−−++++−−−−  

1.. ====αα Tts                                                 (8) 

The first L1 penalty encourages sparsity on c. And the second 

L2 penalty takes care of potential singularity in M when solving 

for c.  

An R package “spls” is available and is used to implement 

the feature selection method in our study. 

 

2.2.3 Network-based LASSO Label Prediction 

We employed a network-based semi-supervised learning 

(NSSL) method to predict the label of a new sample; this 

scheme falls halfway in between unsupervised and supervised 

learning for improving the prediction power by using unlabeled 

data [18-21]. When applied to a biological system, NSSL is 

more computationally efficient. The accuracy is comparable to 

other methods such as the kernel-based methods with a longer 

learning time, although the learning time of NSSL increases 

nearly linearly with the number of graph edges[6, 22]. In addi-

tion, the graph structure could be used to improve the interpre-

tation of biological phenomena [23-25] when using NSSL. 

After combining the labeled and unlabeled samples, we used 

Equation (1) to construct an affinity matrix. We implemented a 

network-based LASSO Label Prediction (NLLP) method to 

predict the labels of the unlabeled samples. Let us assume a 

weighted graph G with n nodes indexed as 1, 2,…, n. A sym-

metric weight matrix is nonnegative, and if wij=0, there is no 

edge between nodes i and j. We assume that the first p training 

nodes have labels, y1, y2, y3,…, yp, where }3,2,1{∈∈∈∈iy , and the 

remaining q=n-p test nodes are unlabelled. The goal is to pre-

dict the labels yp+1, yn by exploiting the linkage in the graph. 
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The dimension of 
trainW is np× , and then 

testW is a 

npn ×− )(  matrix.  

When the categorical response variable G has 2>K  levels, 

the linear logistic regression model can be generalized to a mul-

ti-logit model. The traditional approach is to extend 
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Here lβ is a p -vector of coefficients.  Here we choose a 

more symmetric approach. We model 
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The authors in [24]fit the model (10) using the regularized 

maximum likelihood estimation. Using a similar notation as 

before, let )Pr()( iil xlGxp == , and let { }Kgi ,...,2,1∈  be the 

i th response. We maximize the penalized log-likelihood. 
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In our study, ������ refers to‖��‖�. We used the R package 

“glmnet”[26] to implement the  generalized linear model and 

our NLLP method.  

3 RESULTS AND DISCUSSIONS 

3.1 Method overview 

Given two or more types of data for the same sample (e.g., 

KIRC subjects), we first create a network for each type of data 

(Fig. 1, 2) and then fuse these  networks into one similarity 

network (Fig. 3). The initial step is to use a similarity measure 

for each pair of samples to construct a sample-by-sample simi-

larity matrix for each data type. The matrix represents a similar-

ity network, where the nodes are samples and the weighted 

edges measure the similarity between a pair of samples. The 

network-fusion step uses a nonlinear method based on message-

passing theory [27], which iteratively updates every network, 

making it more similar to the others per iteration.  After a few 

iterations, SNF converges to a single network, a common subset 

whose vertices have strong local affinity.  

The red, green and blue circles represent the patients at 

KIRC stage I, stage II and stage III respectively. The link trans-

parency shrinks as the link weight increases. These are all the 

same for the following two figures (Fig. 2 and Fig. 3). 
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The following experimental results are all based on three 

networks (Fig. 1-3). 

3.2 Cancer Stage Prediction 

In order to investigate the potential of using networks as a diag-

nostic tool, we predicted the cancer stage of new patients based 

on network fusion. We used resample validation to evaluate the 

performance of our prediction method. We denoted acu_GM by 

the prediction accuracy using the fused network from two types 

of data, i.e., gene expression and methylation.  Similar notations 

are used for other networks, i.e., acu_genexpr for the network 

from gene expression data, and acu_Methy for the network 

from DNA methylation data.  “avg_acu_GM” represents the 

average value of prediction accuracy “acu_GM” of 1000 times 

of sampling. It is similar for other two networks. Table 1 

showed the average prediction accuracy of 1000 times of sam-

pling. From the experimental results (Table 1), the fused net-

work performs the best (avg_acu_GM≈0.76).  We generally 

expect that results using the fused network, which uses two 

types of data, is superior to approaches using only one type of 

data (avg_acu_GM > avg_acu_genexpr  or  avg_acu_GM 

>avg_ acu_Methy).   

 

In the current NLLP approach, we achieved a good accuracy 

of predicting the KIRC cancer stage using the fused network. In 

our future work, we will incorporate prior knowledge (e.g. 

Pathway information) to further improve our NLLP method. 

In addition, we also calculated the variance of prediction ac-

curacy of 1000 times of sampling (Table 2).  We used 

“var_acu_GM” to indicate the variance value of prediction ac-

curacy “acu_GM” of 1000 times of sampling.  Similar methods 

were used for the other two networks. From the results shown 

in Table 2, we can see that the prediction methods are all very 

stable whether they were applied to two single networks or the 

fused network. 

 

Fig. 1. The network constructed from gene expression data. 

 

Fig. 3. The fused network from two data types: gene expression and 
DNA methylation. 

Fig. 2. The network constructed from DNA methylation data. 

TABLE 1 

THE AVERAGE PREDICTION ACCURACY BASED ON NETWORKS 

FROM DIFFERENT TYPES OF DATA 

NLLP KNN7
1
 MLW

2
 WDC

3 

avg_acu_GM 0.757 0.526 0.640 0.679(λ=0.9) 

avg_genexpr 0.732 0.667 0.527 0.601 (λ=0.5) 

avg_Methy 0.696 0.308 0.443 0.593(λ=0.9) 

1. K nearest neighbors, k=7;  
2. Maximum link weight; 
3. Large link weight and small difference of degree centrality 
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3.3 Comparisons with Other Network-based 
Methods 

Sharan et al. [28] separated the network-based label prediction 

methods into two types of approaches: direct schemes, which 

infer the label of a node based on its connections in the network, 

and module-assisted schemes, which first identify module of 

related nodes and then label each module based on the known 

labels of its members. However, the premise of the latter type of 

prediction method is an accurate module identification method. 

They[28] also presented a simple comparison between two 

types of network-based label prediction methods and it showed 

that the direct methods have better performance than the mod-

ule-assisted methods. Just because of this,  in the study, we only 

compared our NLLP method with some direct  prediction meth-

ods, including k nearest neighbors[29, 30] (k=7) (KNN7), Max-

imum link weight (MLW) and Large link weight and small dif-

ference of degree centrality[31] (WDC).  In KNN7, an unla-

belled patient is assigned to the label of the patient with the 

largest count among 7 nearest neighbors. For MLW, it is as-

sumed that two patients (one labeled and the other unlabeled) 

with the maximum link weight have the same label.  

In WDC, the assumption is that if there is a larger link 

weight and a smaller difference of degree centrality between an 

unlabeled patient and a labeled patient, the two patients have 

identical labels.  For each test patient j, we first found the solu-

tion of the objective function as follows: 

max�∈�� !�"#$�% + �1 − #�exp	�−()� − )%*�        (13) 

where +,-��. is the training labelled samples. Based on this, the 

label of optimal i then was assigned to the test patient j. $�%  is 

the link weight between the unlabelled patient j and the labelled 

patient i.  )�  denotes the degree centrality of patient i in the 

network. λ  is a nonnegative tuning parameter. We used 

resample validation (1000 times) to find the optimal λ. Table 1 

and Table 2 presented the comparison results about prediction 

accuracies and the variance of the prediction accuracies for four 

network-based prediction methods, respectively. It is shown 

that our NLLP method achieved the highest accuracy (Table 1). 

For the fused network, the NLLP method shows the least vari-

ance (Table 2), which indicates that our prediction method is 

the most stable compared with other three prediction methods. 

Therefore, compared with other three network-based prediction 

methods, our proposed method NLLP achieved the best perfor-

mance. 

3.4 Evaluation on Hybrid KIRC dataset 

In order to make up the insufficiency of samples, we added 

simulated data to the experimental datasets as follows. For each 

stage of gene expression data, we randomly sampled one gene 

expression value of each gene with replacement and generated 

one simulated sample. We repeated doing the resampling 20 

times and generated 20 simulated samples of each stage. Simi-

lar methods were used with the DNA methylation data. Then 

we combined the KIRC dataset downloaded from TCGA and 

the simulated KIRC dataset into a hybrid KIRC dataset.  We 

applied our NLLP method to the hybrid KIRC dataset and eval-

uated the performance.  Besides the average prediction accura-

cy, we also computed true positive rate (TPR), and false nega-

tive rate (FNR) for each stage of the KIRC subjects.  TPRk 

denotes ture positive rate of samples at stage k. FNRij repre-

sents the false negative rate that the samples at stage i are iden-

tified to be at stage j.   Table 3 and Table 4 show the average 

performance of NLLP based on the networks from different 

types of data using 5-fold cross validation. The variance value 

of the performance can be seen in Table 5. 

From these three tables, it can be seen that the TPR of stage 

Ⅲ is the least for each network comparing with other two stag-

es.  Stage Ⅱand Ⅲ are both predicted as stage Ⅰwith high 

probability (FNR21=0.244 and FNR31=0.342) and we will try 

our best to address the problem. What’s more, it is indicated 

that our prediction method is very robust as demonstrated in 

Table 5. 

TABLE 2 

THE VARIANCE OF PREDICTION ACCURACY BASED ON NETWORKS 

FROM DIFFERENT TYPES OF DATA 

NLLP KNN7
1
 MLW

2
 WDC

3 

var_acu_GM 
4.23E-03 5.04E-02 1.50E-02 

1.60E-02 

(λ=0.9) 

var_genexpr 
3.79E-03 1.28E-02 0.00E+00 

1.53E-02 

(λ=0.5) 

var_Methy 
2.46E-03 5.20E-02 1.99E-02 

1.16E-02 

(λ=0.9) 

1. K nearest neighbors, k=7;  
2. Maximum link weight; 
3. Large link weight and small difference of degree centrality 

TABLE 3 

THE AVERAGE TPR AND ACCURACY OF NLLP BASED ON THE 

NETWORKS FROM DIFFERENT TYPES OF DATA 

GM genexpr Methy 

ACC 0.852 0.783 0.663 

TPR1 1.000 1.000 1.000 

TPR2 0.756 0.685 0.568 

TPR3 0.658 0.673 0.658 
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4   CONCLUSIONS 

With the rapid development of high-throughput genomic tech-

nology, it has become easier and cheaper to collect diverse 

types of genomic data for biological discovery.  In order to 

make use of the complementary information from different 

types of data, data integration has been a hot research field. 

However, multi-type data integration is a pressing challenge. In 

this study, we combined gene expression and DNA methylation 

data to construct a fused network containing integrated infor-

mation from both data types. We tested the potential of network 

based approaches in disease status identification from three 

networks: two networks from each type of data (gene expres-

sion, DNA methylation), and their fused networks. We classi-

fied the KIRC subjects into three groups (three stages) based on 

these three networks respectively. Furthermore, we used 

resample (1000 times) validation to evaluate the performances. 

The experimental results show that the prediction accuracy is 

the highest for each prediction method when using the fused 

network. This further confirms that we should comprehensively 

employ multi-type data for better diagnosis. From the compari-

son with other three network-based prediction methods, it is 

shown that our NLLP method achieves the best performance. 

We believe that the performance could be further improved by 

incoporating prior biological knowledge (e.g., pathway infor-

mation from KEGG). Although we used NLLP method to pre-

dict the KIRC stage as an example of using network based ap-

proaches, our prediction method can also be used for early di-

agnosis of other cancers and diseases. 
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