
Technical Note

Normalization of Multicolor Fluorescence In Situ
Hybridization (M-FISH) Images for Improving

Color Karyotyping
Yu-Ping Wang1* and Kenneth R. Castleman2

1School of Computing and Engineering, University of Missouri, Kansas City, Missouri
2Advanced Digital Imaging Research, LLC, League City, Texas

Received 10 May 2004; Revision Received 29 October 2004; Accepted 15 December 2004

Background: Multiplex or multicolor fluorescence in situ
hybridization (M-FISH) is a recently developed cytogenetic
technique for cancer diagnosis and research on genetic dis-
orders. By simultaneously viewing the multiply labeled spec-
imens in different color channels, M-FISH facilitates the de-
tection of subtle chromosomal aberrations. The success of
this technique largely depends on the accuracy of pixel
classification (color karyotyping). Improvements in classifier
performance would allow the elucidation of more complex
and more subtle chromosomal rearrangements. Normaliza-
tion of M-FISH images has a significant effect on the accuracy
of classification. In particular, misalignment or misregistra-
tion across multiple channels seriously affects classification
accuracy. Image normalization, including automated registra-
tion, must be done before pixel classification.
Methods and Results: We studied several image normal-
ization approaches that affect image classification. In par-
ticular, we developed an automated registration tech-
nique to correct misalignment across the different fluor
images (caused by chromatic aberration and other fac-
tors). This new registration algorithm is based on wavelets
and spline approximations that have computational advan-
tages and improved accuracy. To evaluate the perfor-
mance improvement brought about by these data normal-

ization approaches, we used the downstream pixel
classification accuracy as a measurement. A Bayesian clas-
sifier assumed that each of 24 chromosome classes had a
normal probability distribution. The effects that this reg-
istration and other normalization steps have on subse-
quent classification accuracy were evaluated on a compre-
hensive M-FISH database established by Advanced Digital
Imaging Research (http://www.adires.com/05/Project/
MFISH_DB/MFISH_DB.shtml).
Conclusions: Pixel misclassification errors result from dif-
ferent factors. These include uneven hybridization, spectral
overlap among fluors, and image misregistration. Effective
preprocessing of M-FISH images can decrease the effects of
those factors and thereby increase pixel classification accu-
racy. The data normalization steps described in this report,
such as image registration and background flattening, can
significantly improve subsequent classification accuracy. An
improved classifier in turn would allow subtle DNA rear-
rangements to be identified in genetic diagnosis and cancer
research. © 2005 Wiley-Liss, Inc.
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The progress of cytogenetics has become significantly
faster since the discovery of chromosome banding and
molecular fluorescence in situ hybridization (FISH) tech-
niques (1–8). FISH-based methodologies greatly enhance
the detection of genetic abnormalities in normal and can-
cer cells. Multiplex FISH (M-FISH) of human chromosomes
is based on the simultaneous hybridization of a pool of 24
chromosome-specific probes (3). Figure 1 is an M-FISH
image dataset that is collected from six spectral channels
by using a filter wheel. From this multiple channel image,
it is able to distinguish each human chromosome in a

cell by means of specific color labeling. Figure 2a shows
a metaphase chromosome image representing the 24
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classes of chromosomes in a color-mapped display. By
using combinations of different colored DNA probes, one
can visualize simultaneously the 22 autosomes and the
two sex chromosomes with a classifier, as illustrated in
Figure 2b. This color karyotyping allows rapid detection
of simple and complex chromosomal alterations. The
technique can be used for the identification of subtle
chromosomal aberrations, such as the translocation of
telemetric chromatin, which is difficult to detect with
banding alone. It can also be used for identification of
small genetic markers that remain elusive after banding.

Digital image processing automates the time-consuming
tasks of color karyotyping (1,6,9,10). It provides accurate
pixel-by-pixel classification of multicolor FISH images,
making M-FISH feasible for many clinical and research
applications. Despite its success, the technique has less
than perfect classification accuracy (11,12) that is limited
by several factors. Figure 2b shows an example of pixel
classification with a Bayesian algorithm, which exhibits
misclassification of many pixel regions. The size of these
misclassified regions is significant compared with those of
the small regions involved in the complex chromosomal
rearrangements that researchers often hope to elucidate
with M-FISH. They also degrade the overall usefulness of
the technique. Hence, it is highly desirable that the pixel
classification be accurate enough for reliable patient diag-
nosis. However, even for normal chromosomes the accu-
racy can not reach 100%. To make this technique practical
for identifying chromosome abnormalities in cancer and
genetic disease diagnosis, the key step is to increase the

classification accuracy. This report describes several data
normalization approaches that can significantly affect the
accuracy of downstream pixel classification. To evaluate
the performance of these approaches, we simply used
Bayesian classifier as a test.

There are many factors that can affect a pixel classifier’s
accuracy. We have found that the discriminatory power
(signal-to-noise ratio) and image capture efficiency (exci-
tation efficiency) of different M-FISH analysis systems are
useful in measuring a system’s ability to obtain accurate
and reproducible classification results (12). Misregistra-
tion is another important factor that affects the accuracy
of pixel classification. In this report, we introduce a so-
phisticated wavelet-based algorithm for M-FISH image reg-
istration. The wavelet technique can improve accuracy
and computational speed. To demonstrate the usefulness
of registration and other normalization approaches, they
are tested by the downstream pixel classification against a
public M-FISH database (13) that we previously estab-
lished.

MATERIALS AND METHODS

We first introduce the database that we established.
Then we introduce the several data normalization ap-
proaches such as background subtraction and dimension
deduction. In particular, a wavelet-based registration algo-
rithm is described in detail. The Bayesian classifier is
introduced, which is used to test the performance of data
normalization.

FIG. 1. A six-channel M-FISH image dataset. All chromosomes are stained in the DAPI channel and labeled with a different combination of fluorescence dyes.
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M-FISH Image Database

A database consisting of 200 M-FISH–labeled human
chromosome spread images has been established by Ad-
vanced Digital Imaging Research (ADIR) (13–15) to sup-
port this research. The database contains six-channel im-
age sets recorded at different wavelengths. The specimens
were prepared with probe sets from Applied Spectral
Imaging (Migdal HaEmek, Israel), Advanced Digital Imag-
ing Research (ADIR; League City, Texas, USA), Cytocell
Technologies (Cambridge, UK), and Vysis (Downers
Grove, IL, USA). The database contains 200 spreads from
33 slides from five different laboratories. The specimens
include 74 normal male spreads, 8 normal female spreads,
99 abnormal spreads, and 17 more that are of low speci-
men quality. There are 50 different chromosomal aberra-
tions represented, including numerical abnormalities and
structural arrangements. Spread quality ranges from excel-
lent to very difficult. This comprehensive image database

is a valuable source for M-FISH studies. In addition, the
database includes a classification map, stored as an image
file, that was established by experienced cytogeneticists.
This image is labeled so that the gray level of each pixel
represents its class number (chromosome type). In addi-
tion, background pixels are 0, and pixels in a region of
overlap are �1. This data file serves as ground truth to test
the accuracy of M-FISH image classification algorithms.

In this report, because the goal is to measure the per-
formance of normalization using downstream classifica-
tion, we use normal chromosome images in which the
ground truth is easily established by an expert cytogenet-
icist. It is reasonable to assume that an improved pixel
classifier for normal chromosomes in turn would improve
the capability of this technique in resolving subtle and
cryptic chromosome abnormalities when used for cancer
and genetic diagnosis.

Segmentation of Chromosome Regions

Pixel classification is performed in the region of chro-
mosomes. The first step is to segment the chromosome
regions. Because all the chromosomes are stained in the
4�,6-diamidino-2-phenylindole (DAPI) channel and can be
visualized under a microscope, the segmentation was
done for the DAPI image. First the edges of the chromo-
somes in the DAPI image are detected using the Laplacian
of Gaussian edge detector (16). To fill holes in the edge
map, mathematical morphology operations such as dila-
tion and erosion are applied (16) (Fig. 3).

Background Flattening

Intensity variations throughout the image, due to non-
uniform illumination and variation among different hybrid-
ization experiments, can limit pixel classification accu-
racy. Background correction or subtraction is necessary to
decrease such variations and enhance the fluorescent sig-
nals. One approach is to perform background flattening.
To do this, we first identify the background points by a
segmentation mask. Then we fit a cubic surface to the
selected background points (16). The background correc-
tion is obtained by subtracting the fitted surface from the
image. This normalization procedure turns out to be very
important in terms of ultimate classifier performance be-
cause it helps to increase the separation distances among
the 24 clusters in feature space. This is demonstrated in
the Results section.

Dimension Reduction and Feature Selection

Each pixel is defined by its six-dimensional spectra;
therefore, each chromosome class is a point in a six-
dimensional feature space. A classifier thus has to separate
24 clusters of points in the six-dimensional feature space.
The pixel classification accuracy is then limited by the
degree of overlap among the 24 clusters of points. As
overlapping increases, classification accuracy decreases.
Color compensation is a useful preprocessing step. It
decreases the effects of spectral overlap among the fluors
and in the image sensor. It has been described previously
(9,16,17).

FIG. 2. The real pixel-by-pixel classification of chromosomes from the
M-FISH image dataset shown in Figure 1. a: Ideal case. b: Classification
with a Bayesian classifier. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Transforming the feature vectors for each class into a
new, lower-dimensional feature space might increase the
separation distance between clusters. Dimension reduc-
tion using principal component analysis was used to map
each feature vector into a new, lower-dimensional vector,
representing each chromosome in a compact and easily
interpretable form. This could eliminate the redundancy
between multiple channels that results from spectral over-
lap.

A vector-based coordinate transform, such as the spher-
ical coordinate representation, is another type of feature
space transformation. This may produce better features
because only the vector length (not its direction) is af-
fected by the intensity variations that result from nonuni-
form illumination.

Multispectral Registration

An important factor that limits pixel classification accu-
racy is the issue of multispectral image registration. An

accurate automated registration algorithm is necessary to
ensure the accuracy of subsequent pixel classification.

Sources of Misalignment

One optical principle underlying the inherent misregis-
tration problem in M-FISH imaging is that the focal length
of the objective lens changes with wavelength. As a con-
sequence, when multiple color filters are used in M-FISH
imaging, there is an offset between focal planes of differ-
ent wavelengths that results in axial chromatic aberration.
Moreover, the magnification is inversely proportional to
the focal length. Hence, each object in the specimen also
changes its off-axis position when imaged with different
wavelengths, resulting in lateral chromatic aberration.
Many studies conducted on this kind of error have dem-
onstrated that even the best available objectives with high
numerical aperture produce axial and lateral chromatic
aberration (18). For M-FISH imaging instruments, the ef-
fect of chromatic aberration becomes even more severe.
Substituting filters in the optical path also causes image
shift because it is impossible to maintain perfect mechan-
ical alignment. Aside from these effects, other factors that
may cause misregistration problems include vibration of a
filter, a lens, a camera, the microscope setup, alignment of
the objective, additional optical components plugged into
the microscope, and conditions of image acquisition such
as changes in ambient temperature, thickness of the
coverglass, refractive index of the medium, among others.
All of these factors make misregistration unavoidable
(Table 1).

Multiresolution Registration

Image deformations. The M-FISH images collected
in different color channels must be aligned with each
other before further processing, visualization, and karyo-
typing. We begin with a discussion of two-channel image
registration, in which we refer to the reference image and
the test image. For an M-FISH image set, the DAPI channel
is usually taken as the reference image, and the other five
channels are registered to it. The first step of image reg-
istration is to find homologous (corresponding) points in
both images. Then one must find the geometric transfor-
mation, T�, between the two images such that they be-
come most similar, in a certain metric, after the transfor-
mation.

T� � argT min F�u� � ��, v�T� � �� (1)

where T� and T represent the geometric transformations;
F is the objective function, which measures the similarity
between two objects; and v(T[ � ]) stands for the pixel of
an image to be registered and is related to the correspond-
ing pixel of the reference image, u, by transformation T.
Once a transformation, T�, is found, the test image can be
warped to the reference image by interpolation. After
image warping, the test image should be well aligned with
the reference image.

There are generally two classes of image transforma-
tions: rigid and nonrigid. For a rigid transformation, trans-

FIG. 3. Segmentation of chromosome regions. a: Chromosome bound-
ary detected with Laplacian of Gaussian. b: Chromosome region detected
followed by mathematical morphology.
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lation, rotation, and scaling are allowed. In this report, we
have assumed that the geometric distortion is caused by
rotation and translation only because the scaling factor is
found not to be significant. For an elastic or curved trans-
formation, there can be deformations of the image parts.
These deformations are usually described by the local
vector displacement (disparity) field. In the case of M-FISH
imaging, the transformation is usually assumed to be rigid.
Nonrigid transformations could distort the shape of chro-
mosomes and contribute to misdiagnosis.

Similarity criteria. When searching for the transfor-
mation, T�, in equation (1), there are several objective
functions that can be used in the optimization. These
including the least square error (LSE), sum of absolute
valued differences, and normalized correlation coefficient.
The definitions of these metrics are provided elsewhere
(19). We have tested several of these metrics and identi-
fied the mutual information (MI) metric as most appropri-
ate for M-FISH images (see Results). This metric is defined
as

MI�T� � �
x

Pu,v� x,T � x�� � log
Pu,v�x,T �x��

Pu�x� � Pv�T �x��
(2)

where Pu, Pv, and Pu,v are the probability distribution
functions of u, v, and their joint probability distribution
function. This metric appears to be more suitable for the
multispectral images because it makes use of the proba-
bility distribution of the gray-level intensities (the histo-
gram) rather than of the image intensities themselves.

Optimization algorithm. The optimization in equa-
tion (1) leads to a nonlinear multivariant optimization
problem; hence, numerical optimization techniques are
required to find the solution. The simplest optimization
technique is the full search, which requires division of
search space into discrete steps and evaluation of the
objective function over this entire set of discrete param-
eters. Because this technique is time consuming, we
choose a more efficient optimization method, depending
on the size and structure of the problem. The most pop-
ular choices include the Powell method, gradient descent,
conjugated gradients, and variations of the Newton

method (20,21). We use the Marquardt-Levenberg algo-
rithm in this work.

Image warping or interpolation. After the transfor-
mation T� is known, we perform geometric interpolation
to unwarp the test image to match the reference image.
Because of good approximation properties, spline inter-
polation is applied (22). This can result in subpixel accu-
racy.

Multiresolution searching. In applying the above-
mentioned multidimensional optimization algorithm, con-
vergence speed is a major concern. These algorithms use
an iterative strategy and must evaluate derivatives of the
objective functions at each step. Using a multiresolution
pyramid approach can speed up the process by searching
at a lower resolution level. It can also increase robustness
through approaching the solution by gradual refinement.
Image registration starts at the coarsest level, which has a
minimal number of pixels, and then uses that solution as
an initial guess to proceed down to the images at finer
levels. Optimal transformation parameters are searched
only in the neighborhoods of the minima found at the
previous level. This is repeated until the finest (original)
level is reached. This will decrease searching time. In
addition, the multiresolution strategy decreases the sensi-
tivity of the solution to the choice of initial values and
increases the accuracy of estimation (23). This is because,
at the coarse scale, we can get a close estimation of the
transformation parameter rather than a random assign-
ment. These will be demonstrated with examples in the
Results.

Evaluation of the normalization approaches using
pixel classification. We will use the downstream clas-
sification to measure and validate the performance of the
data normalization because the ultimate goal of these
approaches is to improve the pixel classification accuracy.
For this purpose, we simply employed the widely used
Bayesian classifier. We have also tested a variety of other
classifiers such as the Nearest Neighbor (NN) and K-
Nearest Neighbor (kNN) (24) and fuzzy c-means algo-
rithms (25).

Each pixel in the metaphase chromosome image corre-
sponds to a vector with six elements

Table 1
List of Sources of Misregistration and the Effects

Name Causes Effects

Axial chromatic aberration Focal length of lens and point spread function
changes with wavelength

Axial shift and defocus

Lateral chromatic aberration Magnification is inversely proportional to the
focal length

Lateral off-axis shift and
magnification

Mechanical misalignment Limitations of design, operator actions, optical
setup

Shift, rotation, and scaling

Monochromatic aberration Spherical aberration, curvature of field,
astigmatism, distortion, and coma

May lead to nonrigid motion

Other sources Change of ambient temperature, thickness of
cover glass, embedding media, optical
components plugged in

May lead to nonrigid motion
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X � � x1, x2, x3, x4, x5, x6�� (3)

where each element of the vector represents the gray-
level value in one of the six image channels. This six-
dimensional feature vector is fed into a trained pixel
classifier, and each pixel in each chromosome is classified
into a chromosome type and assigned a corresponding
color from a user-defined color table.

Based on the measured six-dimensional features, each
pixel in the metaphase image is classified into one of 24
types. Given the nature of data derived from well-sepa-
rated spectral signatures, the probability distribution of
the feature values for each class �i is assumed to be
multivariate normal density function, with a probability
density function as

p�X��i� �
1

�2��3��i�
1

2

exp � �
1

2
�X � 	���i

�1�X � 	��
(4)

where 
i is the 6 � 6 covariance matrix, and 	 is the
six-component mean vector. �
i� and 
i

�1 are the deter-
minant and inverse of the ith covariance matrix, respec-
tively. During the training phase the mean vector, 	i, and
covariance matrix, 
i, are calculated from the training
data for each class �i. To classify a pixel described by the
feature vector X, we calculate the a posteriori probability,
P(�i�X), that the pixel belongs to class �i. It is given by

p��i�X� �
p�X��i� p��i�

p�X�
, p�X� � �

i�1

24

p�X��i� p��i�

(5)

Its value is determined by the Bayesian decision rule,
which involves the computation of the Mahalanobis dis-
tance (16).

di�X� � ln p��i� �
1

2
��i� �

1

2
�X � 	���i

�1�X � 	� (6)

In the feature space, there are 24 clusters. Each pixel is
assigned to the class with the nearest mean, according to
this decision function.

RESULTS
It is reasonable to assume that the image normalization

should result in improved accuracy of subsequent pixel
classification. The performance of registration and other
image normalization steps will be assessed with a Bayesian
classifier and the M-FISH database (13) that we have es-
tablished. Normal chromosomes were used for validation
because the karyotyping of normal chromosomes is easily
established with the help an expert cytogeneticist. It is
expected that the improved classifier in turn would sig-
nificantly identify chromosome abnormalities when ap-
plied to cancer and genetic diagnosis.

Effect of Background Flattening

To test the effect of background subtraction on the
accuracy of classifier, we performed the classification of
chromosomes with and without background correction.
This comparison of classification accuracy is presented in
Table 2. We found that one must fit the cubic background
surface through points that are near to and points that are
distant from the chromosomes. In addition, the back-
ground class should be trained on pixels that fall near to
rather than far from the chromosomes. This decreases the
misclassification of edge pixels, although distant back-
ground pixels are still classified correctly.

Effect of Feature Selection on
Classification Accuracy

We performed the principal component analysis (16) to
eliminate redundancy among multiple spectral channels.
The dimensionality of the six-dimensional dataset is de-
creased by keeping only the five largest principal compo-
nents of the data. In other words, we drop the least
important feature. We present comparisons in Table 3.
This result indicates that dimensionality reduction can
improve the classification accuracy in some instances.
This confirms the conclusion that five spectral channels
(excluding DAPI) are usually sufficient for the discrimina-
tion of these 24 classes of chromosomes by color combi-
nation.

Table 2
Comparison of Pixel-by-Pixel Classification of M-FISH Image

Sets With and Without Background Correction*

Test image
set

Without background
flattening

With background
flattening

1 75.53 90.87
2 71.92 89.89
3 89.40 93.32
4 90.56 90.42
5 90.25 92.24

Average 83.53 91.35

*Overall correct pixel classification rate is presented as
percentage. The experiment was performed on the M-FISH
database (13).

Table 3
Comparison of Pixel-by-Pixel Classification Rate (%) of

M-FISH Image Sets With and Without Dimension Reduction

Testing image
set

Without dimension
reduction

With dimension
reduction

1 75.53 88.63
2 71.92 84.67
3 89.40 90.35
4 90.56 85.26
5 90.25 89.34

Average 83.53 87.65
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Evaluation of Image Registration

The rationale behind our experiment concerns (a)
whether the proposed muitiresolution wavelet approach
can significantly decrease the computational time and
improve the accuracy of searching transformation param-
eters; (b) what is the best similarity metric for M-FISH
registration; and (c) whether the registration can lead to
improved classification accuracy. To answer these ques-
tions, we made the following comparisons.

Computational Speed With Versus Without
Multiresolution Approach

The automated registration of five image channels is a
time-consuming process. The registration algorithm is ex-
pected to be accelerated by multiresolution wavelet-based
searching. To evaluate the computational improvement
brought about by the wavelet algorithm, we tabulated the
CPU time for processing an image by using the Haar
wavelet and a spline wavelet filter of size 4 (16). We also
listed them as a function of different similarity criteria, as
in Table 4. These similarity measurements include LSE, MI,
and cross correlation. The results confirm that the mul-
tiresolution approach increases computation speed. How-
ever, larger filters may lead to longer computational times.

Accuracy With Versus Without
Multiresolution Approach

To test the robustness of multiresolution approach to
the choices of initial values when implementing the non-
linear optimization (equation [1]), we simulated an image
with known translation and rotation parameters that were
used as ground truth to test the accuracy. Figure 4 shows
a comparison with versus without multiresolution ap-
proach. The image was translated in the horizontal and
vertical directions by two pixels and rotated by 2 degrees.
With multiresolution Harr or spline wavelets, we obtain a
more accurate estimations than without multiresolution.

Comparison of Different Similarity Metrics

To evaluate several similarity metrics such as the MI,
LSE, and normalized cross correlation for the registration,
we performed the test on the simulated images with these
three different similarity measurements. Figure 5 shows
the comparison among these three different metrics,
where the same simulated image for comparing accuracy
was used. From the experiment we concluded that MI is

better than normalized cross correlation and LSE approx-
imation methods.

Effect of Registration on Accuracy

The classification of each pixel in the chromosome
depends on the simultaneous pixel values in the six color
channel images. Figure 6 shows an example of image
misalignment that can be corrected with registration tech-
niques. Obviously, proper registration will improve the
accuracy of pixel classification, particularly near chromo-
some edges and boundaries of rearrangements. This
would increase the reliability of this technique in identi-
fying small anomalies for cancer and genetic disease diag-
nosis.

By using the ADIR M-FISH database (13), we conducted
experiments using the proposed registration technique to
evaluate the effect of registration on classification accu-
racy. The results of classification on several different im-
age samples labeled with the Vysis probe set are listed in
Table 5. These M-FISH images were collected with good
optical component alignment. It indicates that, even after
better optical component alignment, the software ap-
proach of registration for each different image samples
increases the correct pixel classification rate.

Table 4
Comparison of Computational Time With and Without

Wavelet Searching*

Similarity
measure

Without
wavelet

Haar
wavelet

Spline
wavelet

LSE 87.02 37.26 42.29
MI 105.26 43.28 58.43
X-Cor 84.23 41.51 30.00

*LSE, least square error; MI, mutual information; X-cor, cross
correlation.

FIG. 4. Accuracy with versus without wavelet approach.

FIG. 5. Comparison of accuracy with different similarity metrics.
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The increase of classification accuracy brought by reg-
istration can also be verified by other classifier. Table 6
shows the classification by a fuzzy c-means algorithm (25).
In other words, regardless of the classifier used, misregis-
tration is an important source of error that must be cor-
rected.

DISCUSSIONS AND CONCLUSIONS
Current M-FISH instruments typically do generally accu-

rate karyotyping but exhibit misclassifications of numerous
pixel regions. The pixel misclassification errors result from a
number of factors, including biochemical noise, electronic
noise, spectral overlap, and misregistration. An image nor-
malization step is required for improving accuracy in pixel
classification. Improved classification accuracy will greatly
decrease the size and number of misclassified pixel regions.
This would allow smaller rearrangements to be identified
and better enable the technique to resolve complex rear-
rangements when applied to patient diagnosis, thus provid-
ing greater applicability of the technique in automated karyo-
typing.

In this report we have introduced several image nor-
malization approaches, especially a wavelet-based ap-
proach for multispectral FISH image registration. By per-
forming the registration in a multiresolution framework,
accuracy and speed of registration algorithm are im-
proved. The validation of these approaches was con-
ducted on normal chromosomes. Even for the tested im-
ages collected with a good optical component alignment,
we found approximately one to three pixel shifts and 1- to
2-degree rotations. Correction of these positional errors
improves classification rate. We anticipate that the regis-
tration algorithm will lead to more improved accuracy in
case these optical components are not well aligned. It is
reasonable to believe that the improved accuracy of clas-
sifier brought about by these normalization approaches

would result in more accurate detection of subtle genetic
rearrangements for cancer diagnosis and research. We
plan to evaluate these approaches on patient data in col-
laboration with cytogeneticists in the future. In this work,
we have assumed that the mulichannel images follow a
rigid transformation. It is expected that a more general
assumption on the nonrigid transformations between mul-
tiple channels could lead to further improvement. This
may involve the use of fluorescent beads (18) and design
of different computational methods. Registering the other
color images to the DAPI image may be least optimal
because the optical performance of the microscope sys-
tem is most different in the ultraviolet/blue region where
DAPI excites and emits. More appropriate would be to use
a fluorochrome in the center of the visible spectrum. In
addition, our future work will develop automated back-
ground subtraction by using more sophisticated spline
fitting approaches (22).

The developed registration algorithm in principle can
be applied to any registration problem such as protein
colocalization and two-channel microarray image registra-

Table 5
Comparison of Pixel-by-Pixel Classification Rate (%) of

M-FISH Image Sets With and Without Registration Using a
Bayesian Classifier

Training/test
image set

Without
registration

With
registration

V1301 46.5042 49.2528
V1306 86.5797 87.7719
V1303 68.9885 70.2981
V1304 45.2157 47.9901
V1308 52.5654 56.1503
V1309 48.4679 50.7460
Average 58.0536 60.3682

FIG. 6. Effect of registration on multichannel images. Three images from channel spectrum (s). aqua, Far Red, and DAPI are combined and displayed using
red, green, and blue colors. Before registration, there is misalignment (left, arrow). After registration, good colocalization occurs (right, arrow). This
misalignment, without correction, makes subsequent pixel classification less accurate. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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tion. The proposed multiresolution approach offers the
advantages of improved accuracy and speed over conven-
tional registration methods.
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Table 6
Comparison of Pixel-by-Pixel Classification Rate (%) of

M-FISH Image Sets With and Without Registration Using a
Fuzz C Means Classifier

Training
image

Testing
image

Without
registration

With
registration

PNG2 A0202 83.98 84.32
PNG3 A0215 93.10 93.49
V291162 A402 85.50 86.07
V29962 A0620 86.23 86.77
A101 A403 83.97 84.32
A0325 A0218 89.54 90.38
Average 87.0533 87.5583
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