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� Abstract
Multiplex-fluorescence in situ hybridization (M-FISH) is a chromosome imaging tech-
nique which can be used to detect chromosomal abnormalities such as translocations,
deletions, duplications, and inversions. Chromosome classification from M-FISH
imaging data is a key step to implement the technique. In the classified M-FISH image,
each pixel in a chromosome is labeled with a class index and drawn with a pseudo-
color so that geneticists can easily conduct diagnosis, for example, identifying chromo-
somal translocations by examining color changes between chromosomes. However, the
information of pixels in a neighborhood is often overlooked by existing approaches. In
this work, we assume that the pixels in a patch belong to the same class and use the
patch to represent the center pixel’s class information, by which we can use the correla-
tions of neighboring pixels and the structural information across different spectral
channels for the classification. On the basis of assumption, we propose a patch-based
classification algorithm by using higher order singular value decomposition (HOSVD).
The developed method has been tested on a comprehensive M-FISH database that we
established, demonstrating improved performance. When compared with other pixel-
wise M-FISH image classifiers such as fuzzy c-means clustering (FCM), adaptive fuzzy
c-means clustering (AFCM), improved adaptive fuzzy c-means clustering (IAFCM),
and sparse representation classification (SparseRC) methods, the proposed method
gave the highest correct classification ratio (CCR), which can translate into improved
diagnosis of genetic diseases and cancers. VC 2016 International Society for Advancement of

Cytometry

� Key terms
M-FISH; tensor decomposition; HOSVD; chromosome image classification; image
segmentation; cytogenetics

CHROMOSOME is the carrier of genetic information. A normal human has 46 chro-

mosomes, which are arranged into 22 pairs of similar, homologous autosomes and

two sex determinative chromosomes (XY-male, XX-female). Karyotyping is the pro-

cess by which geneticists take images of the chromosomes when the cell is under-

going mitosis and classify the chromosomes into 23 or 24 classes based on their

banding patterns. Since this process is both time consuming, expensive and difficult

to automate for detecting chromosome aberrations, a combinatorial labeling tech-

nique called multiplex-fluorescence in situ hybridization (M-FISH) (1,2) has been

developed to achieve a higher sensitivity, specificity, and resolution than is possible

by banding analysis (karyotyping). This technology uses five color dyes that attach to

specific sequences of DNA in ways that each chromosome class is labeled with a

unique combination of dyes and another DNA dye known as 4-6-diamidino-2-

phenylindole (DAPI) is used to stain all chromosomes. A fluorescent microscope

with multiple optical filters is used to capture the chromosome images, where each

dye is visible in a particular wavelength. Using combinatorial labeling, M-FISH

images can be obtained as multispectral or multichannel images, in which each pixel

at each channel is either visible (signed as “1”) or not (signed as “0”). Figure 1 shows
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an example of M-FISH image set, which is collected by a fluo-

rescent microscope with multiple optical filters. S Aqua (A), S

Gold (F), S Green (G), Red (R), S Red (Y), DAPI (D) are six

dyes that are used to paint the chromosomes. Only some parts

of chromosomes are visible in the first 5 channels, but all of

the chromosomes can be observed in the DAPI channel. The

number of boolean combinations for n is 2n21. Hence, there

are 31 combinations for 5 fluors, which are sufficient to dis-

tinguish the 24 classes of chromosomes in human genome.

These six images form multichannel representations of chro-

mosomes, by which pixel-wise classification of human chro-

mosome is possible.

M-FISH is used for detecting chromosome abnormalities.

For example, chromosomal translocation (3) is the exchange

of chromosome materials within the same or between differ-

ent chromosomes. M-FISH imaging can be used to quickly

visualize or detect this type of chromosome abnormality, since

pixels in the region of translocation can be displayed in differ-

ent pseudo-colors after image classification, that is, color kar-

yotyping. Even though M-FISH imaging greatly simplifies the

process of karyotyping, visual inspection is still a laborious

process, especially for small rearrangements of chromosome

materials. Many attempts have been made to automate the

process of M-FISH image analysis (4–9), but the reliability of

the technique has not yet reached the level for clinical applica-

tion (8–11). To improve the accuracy of chromosomal aberra-

tions detection, accurate classification algorithms are always

desirable. The algorithms for classification of M-FISH images

can be divided into two categories: pixel-by-pixel classification

(5,7,12–15) and region-based classification (8,16–19). The

pixel-by-pixel classification approaches either first segment

the chromosome pixels from the background using DAPI

Figure 1. An example of the M-FISH image set. (a) S Aqua A-channel. (b) S Gold F-channel. (c) S Green G-channel. (d) Red R-channel. (e)

S Red Y-channel. (f) DAPI D-channel.

Figure 2. (a) A multichannel M-FISH image. (b) Ground truth of classification. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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channel and then perform classification (6,8,11,12,15,18,20)

or directly classify the background pixels as a new class

(4,5,7,21). Even with preprocessing and postprocessing, the

classification accuracy is still not high enough for clinical use

(less than 90%) (4,7,9,15,19). Figure 2 shows a multichannel

M-FISH image and its ground truth. The classification result

is displayed by using 24 pseudo-colors. For a normal cell, each

class of chromosomes should be painted with the same color.

From Figure 2b, we can see that the number of background

pixels is much larger than the number of chromosome pixels.

In Figure 2b, we can also see that the neighbor pixels belong

to the same class with a high probability. In this work, we

employ the pixels in a patch to take into account of this neigh-

borhood information. The size of a pixel value vector is 5s2,

because the number of channel images is 5 and the patch size

is s 3 s. In this way, we utilize the correlations of neighboring

pixels as well as structural information across 5five spectral

channels for the classification. On the basis of high dimen-

sional feature vector space, we can effectively classify the chro-

mosome pixels into 24 classes. In addition, the classification is

performed in the chromosome region, which is generated by

segmenting the chromosome pixels from background from

DAPI channel image.

Chromosome classification has been well studied with

various approaches and in this article we exploit the use of

tensor decomposition methods, which have recently attracted

great interests in signal processing, data analysis, and machine

learning (22–29). Among them, higher order singular value

decomposition (HOSVD) (30) is a special example of tensor

decompositions, which is widely used in classification, feature

extraction, and subspace-based harmonic retrieval (31–35).

Approaches to two-way component analysis including princi-

pal component analysis (PCA), independent component anal-

ysis (ICA), nonnegative matrix factorization (NMF), and

sparse component analysis (SCA) (36–40) have been well

established. Early multiway data analysis methods first refor-

mat the data tensor as a matrix, and then process it with two-

way approaches. However, such a flattened view and the

reshaping of the data will destroy inherent multidimensional

structure in the data, where hidden components within multi-

way data cannot be discovered. To this end, we construct a

three-way training tensor to learn the intrinsic features from

multi-channel imaging data. The basic tensor concepts used

in our work can be found in Supporting Information Appen-

dix A. We will perform HOSVD on the training tensor to

extract the features of each chromosome class simultaneously.

After HOSVD, we can reduce the dimension of feature repre-

sentations or obtain a low-dimensional feature space. Finally,

we project an unknown pixel vector into the low dimensional

feature space and assign it to the class, where it can be best

represented by the low dimensional features corresponding to

that particular class. Both training samples and unknown

pixel vectors are obtained by vectorizing pixels from a cross-

channel patch size of s3s35.

The contributions of our work are twofold. First, we use

the patch to represent a central pixel within a small region so

that we can fully utilize the correlations of neighboring pixels

and structural information across multiple spectral channels.

Second, we employ HOSVD to extract the features for each

chromosome class, obtaining a low dimensional feature repre-

sentation. Finally, an unknown pixel is projected into the

same feature space and is assigned the class label to which it

has the closest distance. As a result, we have a novel patch-

based tensor decomposition algorithm for M-FISH images

classification. This is similar to PCA by projecting the data

into a low dimensional space that can best represent each class

Figure 3. Flowchart of the proposed method. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 4. An example of ROI mask and the patches used. (a) DAPI channel. (b) ROI mask. (c) Patches in a mask. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of chromosome. The chromosome region is generated by seg-

menting DAPI channel image, where all chromosomes are

visible. The remainder of the article is organized as follows. In

Algorithm Section, we describe the details of the proposed

algorithm. In Experimental Results Section, we evaluate the

algorithm by testing on a comprehensive M-FISH image data-

base (Available: http://sites.google.com/site/xiaobaocao006/

database-for-download) established by us. The article is con-

cluded with a summary and discussion.

ALGORITHM

In this section, we will present the details of the proposed

algorithm. Figure 3 shows the flowchart of the proposed

method. There are seven steps in the procedure, which can be

divided into three phases. The first phase is to generate the

mask of region of interest (ROI), only within which the pixels

are classified. This is also called chromosome segmentation.

The second is the training phase in which we construct the

training tensor, which will be used by HOSVD to extract fea-

tures for each type of chromosome. The third is the test phase

in which we determine the class label of an unknown testing

pixel.

Mask Generation-Segmentation

Since only chromosomal region is of interest and it is

very time consuming to classify all the pixels if we consider

the background pixels as a new class. So we focus on chromo-

somal region. A level set-based image segmentation method

(41) is used to segment DAPI channel image to generate the

mask of ROI, containing all chromosome pixels. Only pixels

within this mask are classified using the proposed classifica-

tion algorithm. Since neighboring pixels within a small region

and across multiple channels share the similar features and

therefore may belong to the same class, we use the cross-

channel patch with the size of s3s35 to represent the infor-

mation of a central pixel. Let X 2 Rm3n35 denote the tensor,

which consists of five channels of M-FISH images (e.g., A, F,

G, R, Y channels) and a DAPI channel image. D 2 Rm3n

denote the DAPI channel image, where m 3 n is the image

size. After the segmentation of the DAPI channel image, we

get the ROI mask denoted by M 2 Rm3n. Mði; jÞ50 if D(i, j)

is a background pixel; otherwise Mði; jÞ51. Figure 4 shows an

example of ROI mask and its patches. Figure 4a is the original

DAPI channel image, where all chromosomes in the image are

visible. Figure 4b is the ROI mask obtained from the segmen-

tation of Figure 4a. Figure 4c shows the patches with the size

of 3 3 3 in a mask. Each patch contains the centre pixel col-

ored with red. As we can see from Figure 4c, patch1 consists

of chromosome pixels without background while patch2 con-

tains background pixels. These two patches contain two types

of pixels in the ROI mask: patch1 contains inside pixels while

patch2 has boundary pixels. For both cases, the information

of the center pixel can be well represented by the patch.

Training Phase

The training samples we used are cross-channel patches,

which are extracted from X 2 Rm3n35 randomly. Figure 5

shows the process of how to construct the training tensor. A

cross-channel patch in Rs3s35 are reshaped into a vector in

R5s2

. All of them are arranged into different matrices to con-

struct the training tensor so that every frontal slice contains

the vectorized cross-channel patches for one chromosome

class. The training tensor has three modes: mode-1 for pixel,

mode-2 for sample and mode-3 for class. We denote it by

F 2 R5s23p3q, where 5s2 is the dimension of pixel-mode, that

is, the dimension of training vector; p is the dimension of

sample-mode, that is, the number of training vectors used in

each chromosome class; q is the dimension of class-mode,

that is, the number of all chromosome classes (e.g., q 5 23 for

the female cell and q 5 24 for the male cell). HOSVD is a

powerful tensor decomposition method to extract the features

of each mode simultaneously, as described in Supporting

Information Appendix. Let F have the HOSVD

F5G31U32V33W � D31Ur32V ; (1)

where G 2 R5s23p3q; U 2 R5s235s2

; V 2 Rp3p; W 2 Rq3q;

Ur5Uð:; 1 : rÞ, and D5Gð1 : r; :; :Þ33W 2 Rr3p3q. Figure 6

illustrates the process of HOSVD described in Eq. (1). The

standard orthogonal column vectors in U, V, and W are the

feature vectors of pixel-mode, sample-mode and class-mode,

respectively. HOSVD gives U, V, and W by using the infor-

mation from the training tensor, which constitute the basis

matrices of all the chromosome classes in pixel-mode, sam-

ple-mode and class-mode, respectively. Since the dimension

of pixel-mode increases along with the increase of s, we take

the r leading feature vectors of U to form a subspace to com-

pactly represent the pixel mode. By this approximation, we

reduce the representation of the pixel from R5s2

to Rr .

According to the orthogonality of Ur and V, D can be

obtained by [Eq. (2)]

Figure 5. The process of constructing the training tensor. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 6. The HOSVD of training tensor. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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D5F31U T
r 32V T 2 Rr3p3q: (2)

In particular, Da5Dð:; :; aÞ 2 Rr3p is the ath frontal slice

of tensor D, which consists of the basis vectors for the ath

chromosome class. To get the orthonormal and ordered basis

vectors of Da, we compute the SVD as

Da5BaRaQT
a ; a51; 2; � � � ; q: (3)

We take the k leading left singular vectors of Ba to form the

new basis matrix as Ba;k5Bað:; 1 : kÞ 2 Rr3k . It is clear that

the columns of Ba;k span the dominant subspace of Da.

Test Phase

In the test phase, every pixel in the ROI mask will be clas-

sified by using the feature vectors obtained from training

phase. Since our method is patch based, the unclassified pixel

located at (i, j) is spanned to form a cross-channel patch in

Rs3s35 and then reshaped into a vector f 2 R5s2

. We compute

Figure 7. The CCRs with different patch sizes. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Figure 8. The CCRs with different number of training samples.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Algorithm 1. M-FISH image classification by HOSVD

Input: Five M-FISH images X 2 Rm3n35 and the DAPI

channel image D 2 Rm3n.

Mask generation:

<1> Segment the DAPI channel to get the ROI mask

M 2 Rm3n.

Training phase:

<2> Construct the training tensor F 2 R5s23p3q by

following Figure 5.

<3> Compute the parameter r and k by 10-fold cross

validation.

<4> Compute the HOSVD of the training tensor F by

Eq. (1).

<5> Compute and store the feature vectors of each

chromosome class into Ba;k 2 Rr3k by Eqs. (2) and (3).

Test phase:

<6> For each unclassified pixel in ROI mask, extract the

cross-channel patch in Rs3s35 and reshape it into a test

vector f 2 R5s2

.

<7> Compute the residual for each chromosome class

by Eq. (6) and assign the class index giving smallest

residual to the pixel.

Output: The classified image that chromosome pixels

were assigned to class index.
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the low dimensional representation f �5U T
r f and solve the

following least squares problem,

min ð
ya

f �2Ba;kyaÞ; for fixed class index a: (4)

Since the columns of Ba;k are orthonormal, the solution is

given by

y�a5BT
a;kf �: (5)

Substituting Eq. (5) and f �5U T
r f into Eq. (4), we get the class

index as

arg min
a

kU T
r f 2Ba;kBT

a;kU T
r f k; (6)

where the index a gives the smallest residual, which is taken to

be the predicted class of the unknown pixel. From this pro-

cess, we can see that we assign the unknown pixel to the class,

where it can be best represented with low dimensional feature

vector through tensor decomposition.

A direct implementation of the proposed method is pre-

sented in Algorithm 1. The key operation HOSVD in <4>

requires two SVD computations and two tensor-matrix

products, which can be implemented easily by using MATLAB

Tensor Toolbox 2.6 (http://www.sandia.gov/~tgkolda/Tensor-

Toolbox/).

EXPERIMENTAL RESULTS

To test our algorithm, 20 cells (10 males, 10 females)

were chosen from the M-FISH database that we have estab-

lished (Available: http://sites.google.com/site/xiaobaocao006/

database-for-download). Each M-FISH consists of 6 different

channels as in Figure 1. In addition, an annotated image is

provided for each M-FISH image set, which is given by experi-

enced cytogeneticists. This image is used as the ground truth,

where the gray level of each pixel represents the corresponding

chromosome class index. Moreover, background pixels are

labeled as 0, and the pixels in the region of overlap are labeled

as 255. In our experiments, this classification map serves as

the ground truth to evaluate the accuracy of proposed classifi-

cation method. The correct classification ratio (CCR) is

defined by

CCR5
#chromosome pixels correctly classified

#total chromosome pixels in the image
: (7)

Parameter Determination

There are four parameters in our method that can affect

the accuracy of the classification results. They are the patch

size s, the number of training samples p, and the number of

leading basis vectors r, k. In addition, another parameter is the

number of chromosome classes q, which is determined by the

test cell (q 5 23 for the female cell and q 5 24 for the male

cell). Since the patch size s is independent of the number of

training samples p, we set p 5 30 and vary

s 2 f1; 3; 5; 7; 9; 11; 13; 15; 17g. The parameter r and k are set

by a 10-fold cross validation. Figure 7 shows how the CCR

changes with different patch size. It is clear that there is only

one pixel in the patch when the patch size is 1 3 1. When we

enlarge the patch size to 3 3 3, 5 3 5, 7 3 7, 9 3 9, CCRs in

most of the test cells increase. When the patch size is larger

than 9 3 9, the correlation of pixels within this larger patch

may get lost and the change of CCR is relatively small. This

trend of changes verifies that when we use a patch to represent

the centre pixel, we can take advantage of the correlations of

Table 1. The mean and STD of CCRs(%) with different

classification methods

METHODS

PROPOSED
CELL

INDEX S 5 9 S 5 1 SparseRC IAFCM AFCM FCM

1 94.87 89.54 89.90 56.91 53.34 58.35

2 87.79 82.57 82.78 58.26 41.88 55.46

3 84.00 80.82 80.01 47.36 41.07 44.86

4 83.52 79.71 77.90 52.16 48.34 53.48

5 95.03 77.83 71.83 59.98 64.66 64.31

6 94.03 84.63 81.31 86.50 78.43 77.58

7 89.18 72.68 70.73 73.09 75.67 45.95

8 88.12 81.91 77.61 79.85 77.58 54.14

9 90.78 82.69 78.52 83.15 81.40 71.96

10 94.54 82.06 75.49 82.40 84.28 77.50

11 91.07 85.28 83.77 48.88 58.02 55.24

12 91.69 87.31 83.47 81.87 85.78 85.55

13 95.23 91.85 89.18 88.93 91.65 93.22

14 96.50 90.88 85.46 91.31 92.97 88.97

15 93.19 85.14 82.54 79.36 84.53 73.66

16 86.49 82.16 80.28 70.03 79.94 72.39

17 91.34 89.08 80.12 76.08 76.77 87.34

18 94.18 89.62 85.67 89.69 91.01 84.85

19 93.52 87.10 80.85 85.62 81.08 85.20

20 93.04 88.56 81.56 82.92 72.14 78.61

mean 91.41 84.57 80.95 73.72 73.03 70.43

std 3.78 4.84 4.90 14.50 16.27 15.27

Figure 9. The box plots of M-FISH image classification accuracy

using different methods. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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neighboring pixels and the structural information across dif-

ferent spectral channels, by which the noise can be suppressed.

Since the length of training vector is 5s2, a larger patch size

will lead to a larger training vector, which will increase the

computational load and storage memory. A recommended

moderate patch size is 9 3 9 based on our experiments. We

also study the effect of the number of training samples on the

CCR, as shown in Figure 8. The comparison was performed in

a test cell. We set the patch size as 9 3 9 and vary the number

of training samples p 2 f20; 30; 40; 50; 60; 70; 80; 90; 100; 110;

120; 130; 140; 150; 160g. From Figure 8, we can see that the

CCR gets bigger when p increases. Since the change is less

than 0.3% when p increases from 30 to 160, we can know that

p 5 30 is sufficient for the training phase and p 5 30 is there-

fore recommended.

The Comparison with Different Methods

The results were also compared with four other existing

pixel-wise classification methods: sparse representation classi-

fication (SparseRC) (42), improved adaptive fuzzy c-menas

clustering (IAFCM) (43), adaptive fuzzy c-means clustering

(AFCM) (44), and fuzzy c-means clustering (FCM) (12,13)

methods that we proposed before. Since we are testing the

performance of the classifiers, the classification methods

under comparison were processed for the same ROI mask.

Table 1 gives results of using different methods for the testing

cells. Both the mean value and standard deviations (std) of

CCRs are provided. We display the CCRs of the proposed

method with patch size s 5 1 and s 5 9 in Table 1. When

s 5 1, the proposed method will be degraded to pixel-by-pixel

classification, just as the SparseRC, IAFCM, AFCM, and FCM

methods, which did not use the correlations of neighboring

pixels. From Table 1, we can see that the proposed method

with s 5 1 gives higher mean value of CCRs with smaller

standard deviations than SparseRC, IAFCM, AFCM, and

FCM methods. This shows that the HOSVD method has more

robustness and better performance. As we introduced before,

when s> 1, the proposed method will use the correlations of

neighboring pixels, by which the influence of noise will be

Table 2. The CCRs (%) of the proposed method with different patch sizes

PATCH SIZE (S)

CELL INDEX 1 3 5 7 9 11 13 15 17

1 89.54 93.47 94.64 94.83 94.87 94.96 94.96 94.89 95.07

2 82.57 86.80 87.64 87.71 87.79 87.80 87.77 87.82 87.79

3 80.82 83.16 83.84 84.02 84.00 84.03 84.00 83.98 84.00

4 79.71 82.05 83.23 83.42 83.52 83.56 83.45 83.39 83.42

5 77.83 83.83 90.87 93.62 95.03 95.87 96.29 96.41 96.57

6 84.63 86.69 90.00 92.62 94.03 94.46 94.82 94.96 95.21

7 72.68 79.70 85.67 87.94 89.18 89.77 90.11 90.44 90.44

8 81.91 82.55 86.04 87.36 88.12 88.46 88.65 89.03 88.65

9 82.69 83.76 88.53 90.13 90.78 91.13 91.28 91.43 91.42

10 82.06 86.63 91.57 93.78 94.54 94.88 95.22 94.96 95.29

11 85.28 88.70 90.22 90.93 91.07 91.43 91.52 91.63 91.85

12 87.31 89.32 91.23 91.59 91.69 91.79 91.73 91.70 91.58

13 91.85 92.47 94.56 95.12 95.23 95.32 95.36 95.42 95.36

14 90.88 92.29 95.26 96.22 96.50 96.71 96.80 96.95 96.95

15 85.14 88.23 92.01 92.86 93.19 93.34 93.25 93.17 93.10

16 82.16 83.68 85.90 86.28 86.49 86.48 86.38 86.61 86.54

17 89.08 89.97 91.10 91.23 91.34 91.16 91.12 91.11 91.04

18 89.62 91.53 93.54 94.04 94.18 94.37 94.43 94.36 94.44

19 87.10 89.87 91.46 92.90 93.52 93.80 94.19 94.03 94.10

20 88.56 89.47 92.33 92.98 93.04 93.22 93.18 93.00 93.19

mean 84.57 87.21 89.98 90.98 91.41 91.63 91.73 91.76 91.80

std 4.84 3.95 3.58 3.70 3.78 3.86 3.94 4.91 3.97

Figure 10. The box plots of M-FISH image classification accuracy

using proposed method with different patch size. [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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suppressed and thus the CCRs may increase. Figure 9 show

the box plots of the results in Table 1. Five important statis-

tics are given in the box plot: the sample minimum (smallest

CCR), the lower quartile or first quartile, the median (mid-

dle value), the upper quartile or third quartile, and the maxi-

mum (largest CCR). From Figure 9, we can know that the

CCRs of the proposed method and SparseRC method vary in

a narrower range compared with other methods. This indi-

cates both the proposed method and SparseRC method have

a more stable performance. In addition, the proposed

method has a higher CCR value with less variation than

SparseRC.

Table 3. The computational time of the proposed method with

different patch sizes

PATCH SIZE (S) TRAINING TEST

3 0:06:25 0:03:08

5 0:23:38 0:03:27

7 1:04:58 0:02:47

9 1:52:12 0:03:12

11 2:35:40 0:03:13

13 3:20:48 0:03:45

15 4:13:03 0:03:58

17 5:19:14 0:03:14

Figure 11. An example of the M-FISH image classification results by using different methods, where each class represented with a pseudo

color. (a) Ground truth. (b) Proposed (s51, CCR588.56%). (c) Proposed (s55, CCR592.33%). (d) Proposed (s59, CCR593.04%). (e) Pro-

posed (s513, CCR593.18%). (f) SparseRC (CCR581.56%). (g) IAFCM (CCR582.92%). (h) AFCM (CCR572.14%). (i) FCM (CCR578.61%).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Table 2 shows the CCRs of the proposed method with

different patch size. Figure 10 shows the box plots of results in

Table 2. From Table 2, we can see that when s< 9, the CCRs

increase along with increase of s, but when s> 9 the increase

is not remarkable due to the loss of correlations between pix-

els with a large path. Moreover, if the patch size is too

large, the training vector will be very large too, which will

increase both the computational time and storage space. We

recommend the patch size to be 9 3 9 and the results are the

best when compared with SparseRC, IAFCM, AFCM, and

FCM methods in Table 1. We also know that the difference of

the standard deviation between different patch size is not sig-

nificant and maxfstdg <5, indicating that the proposed

method with different patch sizes are all very robust and a

moderate size of 9 3 9 is sufficient. Figure 11 shows an exam-

ple of classification results of using different methods as well

as the proposed method with four different patch size

(s51; 5; 9; 13). Each chromosome class is labeled and shown

with a pseudo color. It can be seen that there are more isolated

spots in the chromosomal regions of Figure 11f than those of

Figure 11b. These isolated spots are mostly misclassifications,

which can be reflected in the CCRs. The CCR of Figure 11f is

81.56%, which is lower than the CCR of Figure 11b 88.56%.

As we can see from Figures 11c and 11d, when the patch size

increases, the number of isolated spots become smaller and

smaller. There almost have no isolated spots in Figure 11e,

whose CCR is 93.18%. The CCRs in Figures 11g, 11h, and 11i

are 82.92%, 72.14%, and 78.61%, respectively, which are not

very high when compared with the proposed method.

Platform and Computational Time

All experiments were performed using MATLAB R2014b

on a windows workstation with 6-core 2.40GHz CPUs(In-

tel(R) Xeon(R) CPU E5-2620 v3) and the memory(RAM)

of 32.0GB. The MATLAB codes are available at https://

sites.google.com/site/minwang19891218/home/m-fish-image-

classification. To verify the practicability of the proposed

method, we test on one cell to calculate the execution time.

Table 3 shows the computational time of the proposed

method with different patch sizes. From Table 3, we can see

that the training time increases about 40 min along with the

increase of patch size and the test time is relatively stable

between 2 min and 4 min. As we have aforementioned, since

the length of training vector is 5s2, a larger patch size will lead

to a larger training vector, which will increase the computa-

tional load and storage memory. In the training phase, the

parameter r and k (number of leading basis vectors) are set by

a 10-fold cross validation, which will take a long time, espe-

cially when the length of training vector is large. The compu-

tation time of training phase in Table 3 is mostly used during

cross validation. However, since training is usually performed

off-line, computational time is not critical for the overall per-

formance of the algorithm. Once we get the feature vectors of

each chromosome class in the training phase, in test phase, we

compute the low dimensional representation of each test pixel

and get the class label by Eq. (6), which is very fast. According

to the CCR values in Table 2 and the computation time in

Table 3, the patch size of 9 3 9 is recommended.

DISCUSSIONS AND CONCLUSIONS

In summary, in this article, we proposed a patch-based

tensor decomposition algorithm for M-FISH image classifica-

tion by taking advantage of both spatial and spectral correla-

tions of multi-channel images. To our knowledge, this is the

first endeavor of applying tensor decompositions to

Figure 12. The CCRs with different ROI mask. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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chromosome classification, which are able to incorporate

multi-dimensional spectral information using tensors. There

are three phases in the proposed method. First, a level set-

based image segmentation method is used to segment the

DAPI channel to get the mask of ROI, only within which the

pixels are classified. Second, a training tensor is constructed

for HOSVD, by which the features for each chromosome

class are extracted simultaneously. Third, every pixel in the

ROI mask is projected into a subspace to get the low dimen-

sional representation. This feature subspace is shared by all

the chromosome classes. We determine which class’s feature

vectors can best represent the projected pixel and assign the

test pixel to this particular class. Results tested on the M-

FISH database showed that the tensor decomposition-based

algorithm (the patch size s 5 1) can give better classification

ratio than several existing methods including SparseRC,

IAFCM, AFCM, and FCM. The use of patch (the patch size

s> 1) can take advantage of the correlations between neigh-

boring pixels and across different spectral channels, leading

to better classification.

Although the proposed method gives the highest classifi-

cation accuracy among the existing classifiers tested, there still

have rooms for further improvement. The number of basis

vectors for each chromosome class we use is the same, which

is selected by a 10-fold cross validation. We can also use a dif-

ferent threshold value for the Ra in (3) to choose the number

of basis vectors in Ba. In this way, the number of basis vectors

we select in each chromosome class will be different and the

methods in the feature selection will be more flexible, which

may lead to a better classification. Figure 12 shows the results

of proposed method with the true ROI mask and the seg-

mented ROI mask. The patch sizes of 1 3 1 and 9 3 9 are

used for the comparison. From Figure 12, we can see that the

proposed method with patch size of 9 3 9 under the true ROI

mask get the CCRs(%) with mean 5 98.23 and std 5 0.95,

which is the best. As we aforementioned, the use of patch (the

patch size s> 1) can take advantage of the correlations

between neighboring pixels and across different spectral chan-

nels, which will suppress the noise effects. Under the same

ROI mask, the differences of CCRs between different patch

sizes are mainly due to the different levels of noise being sup-

pressed. Analogously, under the same patch size, the differen-

ces of CCRs may also be due to the different ROI masks used.

Since the ROI mask depends on the segmentation method,

some other segmentation method using multichannel infor-

mation such as proposed by Petros et al. (8) can be used to

improve the classification results. Moreover, some pre-

processing (e.g., color compensation, image denoising, and

image enhancement) or postprocessing (e.g., smoothing the

classification map) can be incorporated to further increase the

accuracy of classification.
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