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A variety of high throughput genome-wide assays enable the exploration of genetic risk
factors underlying complex traits. Although these studies have remarkable impact on
identifying susceptible biomarkers, they suffer from issues such as limited sample size
and low reproducibility. Combining individual studies of different genetic levels/platforms
has the promise to improve the power and consistency of biomarker identification.
In this paper, we propose a novel integrative method, namely sparse group multitask
regression, for integrating diverse omics datasets, platforms, and populations to identify
risk genes/factors of complex diseases. This method combines multitask learning with
sparse group regularization, which will: (1) treat the biomarker identification in each single
study as a task and then combine them by multitask learning; (2) group variables from
all studies for identifying significant genes; (3) enforce sparse constraint on groups of
variables to overcome the “small sample, but large variables” problem. We introduce
two sparse group penalties: sparse group lasso and sparse group ridge in our multitask
model, and provide an effective algorithm for each model. In addition, we propose a
significance test for the identification of potential risk genes. Two simulation studies
are performed to evaluate the performance of our integrative method by comparing
it with conventional meta-analysis method. The results show that our sparse group
multitask method outperforms meta-analysis method significantly. In an application to our
osteoporosis studies, 7 genes are identified as significant genes by our method and are
found to have significant effects in other three independent studies for validation. The most
significant gene SOD2 has been identified in our previous osteoporosis study involving the
same expression dataset. Several other genes such as TREML2, HTR1E, and GLO1 are
shown to be novel susceptible genes for osteoporosis, as confirmed from other studies.
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INTRODUCTION
Increasing amounts of high-throughput biological data have been
collected to investigate the genetic mechanism underlying com-
plex traits at different levels, e.g., genomics, transcriptomics,
proteomics, and metabolomics. However, there are usually two
bottlenecks for these genetic studies. One is availability of limited
sample size due to the experimental cost. Small sample size can
lead to the loss of detection power and the reduction of confidence
on identified biomarkers. To analyze data with small sample size
but large variables is still a challenging statistical problem (Hamid
et al., 2009). The other is that biomarkers identified from these
different studies often suffer from poor reproducibility. This issue
could be caused by many factors such as differences on profiling
techniques, demographic, and ancestral information of subjects,
sample sizes, and quality control in these datasets (Phan et al.,
2012; Song et al., 2012). To increase the power and consistency of
biomarker identification, integrating the information of diverse
biological datasets from different levels and platforms shows great
promise and is highly demanded.

Methods for integration of diverse biological datasets
include conventional meta-analysis and a variety of integrative
approaches recently developed (Huttenhower et al., 2006; Liu
et al., 2013). Meta-analysis is a statistical method to summa-
rize the p-values or statistics (e.g., z-score) from each individual
dataset (Evangelou and Ioannidis, 2013). There are a dozen of
approaches for combing multiple p-values or statistics such as
Fisher method. Meta-analysis is usually used to find common fea-
tures across multiple datasets with different sample sizes and plat-
forms but under the same hypothesis (Rhodes and Chinnaiyan,
2005). Recently, a number of integrative approaches have been
developed, which are based on machine learning and statisti-
cal methods (Zhang et al., 2010; Kirk et al., 2012; Xiong et al.,
2012). They can analyze multiple datasets from: (1) different plat-
forms and levels but for the same subjects; (2) same platforms
but different levels and subjects; (3) different platforms but for
the same levels and subjects. They have been successfully used for
various applications such as a single or a set of biomarker iden-
tification (Chen et al., 2013), gene-gene interaction prediction
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(Troyanskaya et al., 2003), and genetic network construction
(Balbin et al., 2013). The results in these studies demonstrate the
advantage of integrating multiple diverse datasets over analyzing
them individually.

In this work, we propose a novel method for integrating
multiple datasets from different platforms, levels, and samples
to identify common biomarkers (e.g., genes). The method was
based on multitask regression model enforced with sparse group
regularization, which can overcome the “small sample size, but
large number of variables” problem. Multitask learning method
has been successfully applied to medical imaging data fusion,
where multiple types of images (e.g., CT, MRI) were combined
for identifying susceptible brain regions and improving disease
classification (Zhang and Shen, 2012). Among various sparse reg-
ularization terms, the use of sparse group penalty has been shown
to outperform other penalties such as lasso in our previous study
of pair-wise genomic data integration (Lin et al., 2013). In this
study, we enforce two sparse group penalties [i.e., sparse group
lasso (Friedman et al., 2010) and sparse group ridge (Chen et al.,
2010a)] into the multitask regression model for data integration.
We assume a regression model for each dataset as a task, and then
multiple regression models will be considered as multiple tasks.
Variables from all datasets will be grouped by specific units (e.g.,
genes). A sparse group penalty is introduced with the aims to
(1) reduce dimensionality, i.e., removing a number of irrelevant
genes; (2) perform group-wise feature selection, i.e., removing
SNPs or expression measurements from the same gene. An effec-
tive algorithm based on alternative direction method (ADM) is
proposed to solve the model. Based on the estimation of the
model, a statistical test is constructed for the identification of
potentially causal genes. We perform two simulation studies with
both fixed and dynamic genetic effects to evaluate our sparse
regression methods, which shows that our sparse group multitask
regression model can increase the power of detecting risk genes
by integrating multiple diverse datasets effectively. Real data anal-
ysis on four osteoporosis studies identifies some significant genes
with highly susceptible to bone mineral density and osteoporosis.

MATERIALS AND METHODS
In this section, we will first introduce the sparse group multitask
regression model and then propose an effective algorithm based
on ADM to solve the model. Finally, a gene based statistical test is
constructed to give the level of significance for each selected gene.

SPARSE GROUP MULTITASK REGRESSION MODEL
We assume T independent datasets collected from K levels of
genomic data (e.g., SNP, mRNA) with Pk(k = 1, . . . , K) plat-
forms (e.g., Affymetrix, Illumina) for each level, and thus T =∑K

k = 1 Pk. The number of observations in each dataset is denoted
by ni, i = 1,. . . T. Sample sizes could also be different due to
the diversity of protocols in each experiment. The measure-
ment matrix of each experiment is denoted by X(i) ∈ Rni×di ,
i = 1, . . . , T, where di is the dimension of features in the i-th
dataset, and usually di >> ni. These features (e.g., SNPs and
mRNA expression probes) are annotated to the genes and we
assume that the genes in different datasets are the same, denoted
by G = {Gi|i = 1, . . . Q}. For example, all SNPs and mRNA

expressions are tested for the same set of genes G. To reduce scale
differences among different levels and platforms, the features in
X(i)s will be normalized to have zero mean and unit standard
deviation. The phenotypic response in each dataset is Y (i) ∈ Rni ,
i = 1, . . . T, which can be binary or quantitative trait. The study
is to identify biomarkers shared by different experiments for the
same phenotype. The coefficient matrix for the regression model

is denoted by C =
[

C(1)′ , C(2)′ , . . . , C(T)′
]′

, where C(i) ∈ Rdi is

the coefficient vector of the i-th model Link
(
Y (i)

) = X(i)C(i), and
Link(.) is the known link function.

Multitask learning is adopted in this study for identifying the
shared biomarkers across a set of distinct but correlated tasks
for better accuracy. In this context, each regression model for an
experiment under different level and/or platform is considered
as a task. For the sake of simplicity, we assume a linear regres-
sion model for each experiment with quantitative trait (i.e., link
function will be the identity matrix). The loss function for each
model L(i)

(
X(i), C(i)

)
can be derived from the negative log likeli-

hood function and thus the total loss function for the multitask
regression model is L(X, C) =∑T

i= 1 L(i)
(
X(i), C(i)

)
.

Many conventional regression methods become ineffective for
processing the large scale biological data, which usually have small
sample sizes and large number of features. This issue can be
addressed by introducing sparse penalty in the model. We propose
a sparse multitask regression model as follows:

minCL(X, C)+�(C) (1)

where �(C) is the sparse penalty function. Two popular penal-
ties are used: sparse group lasso and sparse group ridge, and
the corresponding models are denoted by multitask-sglasso and
multitask-sgridge, respectively. For multitask-sglasso, �(C) =
λ1

∑Q
q= 1

∥∥∥C{k∈Gq}
∥∥∥

2
+ λ2 ‖C‖1, 1, where C{k∈Gq} indicates a

subset of vector C corresponding to the set of features anno-
tated to gene Gq from Ttypes of datasets and ‖C‖1, 1 =∑T

i= 1

∑di
k= 1

∣∣C(i,k)
∣∣ is the l-1 norm on C. This sparse group

lasso penalty groups features from all datasets based on genes
to perform gene level selection. The l-1 norm penalty on C can
further remove those irrelevant features from each gene. This bi-
level feature selection penalty has been proven to outperform
several other single level sparse penalties such as lasso, group
lasso, and elastic net for feature identification. For multitask-
sgridge, a composite sparse penalty, i.e., group ridge penalty

�(C) =∑Q
q= 1

∥∥∥C{k∈Gq}
∥∥∥2

1
, is imposed on C to perform bi-level

feature selection, where the features are also grouped by genes.
The penalty uses the inner l-1 norm penalty on C{k∈Gq} to achieve
the sparsity within each gene while the outer ridge penalty to per-
form ridge regression at the gene level. This group ridge penalty
has also been found to give higher power in identifying causal
genes in high dimensional genomic dataset than other single level
sparse penalties (Chen et al., 2010a).

In this study, we adopt these two bi-level penalties in our mul-
titask regression models to integrate multiple diverse genomic
datasets for gene-based test. Specifically, these two sparse group
multitask regression models are formulated as follows:
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Multitask-sglasso: minC

K∑
i= 1

ωi

Pi∑
j= 1

δj

∥∥∥Y (i,j) − X(i,j)C(i,j)
∥∥∥2

F

+ λ1

Q∑
q= 1

∥∥∥C{k∈Gq}
∥∥∥

2
+ λ2 ‖C‖1, 1 (2)

Multitask-sgridge: minC

K∑
i= 1

ωi

Pi∑
j= 1

δj

∥∥∥Y (i,j) − X(i,j)C(i,j)
∥∥∥2

F

+ λ

Q∑
q= 1

∥∥∥C{k∈Gq}
∥∥∥2

1
(3)

where ωis are the weights for the loss function of different levels
of datasets, and δjs are the weights accounting for the sample size
differences among the experiments of the same type of datasets.
To be more specific, ωis reflect the prior knowledge on the impor-
tance of different levels of measurements, e.g., SNP, gene expres-
sion, and proteomics. We choose ωi = 1, i = 1, 2, l . . . K in this
work, assuming that all levels of measurements contain the same
important genetic information. Larger sample size is expected to
provide more reliable significance test on biomarkers; therefore,
the weight for the experiment under the j-th platform to mea-
sure the i-th level of genomic data is given by δj = nj∑Pi

j= 1 nj

, j ∈ Pi,

where λ1, λ2, and λ are the tuning parameters to control the
sparsity of genes and the number of features in the models.

It could be noted that our sparse multitask regression model
can be taken as the generalization of those existing sparse regres-
sion models to the representation of multiple datasets from differ-
ent levels and/or platforms. For example, when K = 1, P = 1, it
is sparse regression model for single dataset as used in Chen et al.
(2010a) and Simon et al. (2013); when K = 1, P > 1, it can be
reduced to sparse model on multiple datasets at the same level but
from different platforms, similar to the work in Ma et al. (2011);
when K > 1, P = 1, it can work for multiple datasets at different
levels.

SOLUTION ALGORITHM BY ALTERNATIVE DIRECT METHOD (ADM)
Although both (2) and (3) are convex optimization problem with
global solutions, the non-smoothness and the composite norms
still cause difficulties in solving the optimization. Several algo-
rithms have been studied to address such an issue for single task
regression models, e.g., second-order cone programming (SOCP)
algorithm (Candes and Romberg, 2005), spectral projected gradi-
ent method (SPGL1) (van den Berg et al., 2008), accelerated gra-
dient method (SLEP) (Liu et al., 2009), block-coordinate descent
algorithm and SpaRSA (Wright et al., 2009). In sparse multitask
regression model, since the loss function is separable, these algo-
rithms are still applicable but expensive in computations. In this
study, we apply ADM to solve sparse multitask regression model.
ADM uses the splitting strategy to decompose the optimization
problem into several easily solvable ones and updates the variable
in each subproblem iteratively until the convergence is achieved.
It has been successfully applied to solve many convex or non-
convex optimization problems, such as lasso (Yang and Zhang,

2011), total variation regularization (Esser, 2009), matrix decom-
position and our recent work on sparse low rank decomposition
(Dongdong et al., 2013). Deng et al. compared ADM with several
other algorithms and found that ADM outperformed others with
more robustness and faster computation (Deng et al., 2013).

Taking the model in (2) for example, we use ADM to split the
penalties and transform (2) into the following optimization:

minC

K∑
i= 1

ωi

Pi∑
j= 1

δj

∥∥∥Y (i,j) − X(i,j)C(i,j)
∥∥∥2

F
+ λ1

Q∑
q= 1

∥∥∥V1{k∈Gq}
∥∥∥

2

+λ2 ‖V2‖1,1 (4)

s.t. C = V1, C = V2

where V1, V2 are two variables making the loss function separa-
ble. The augmented Lagrange function can be derived as

L (C, V1, V2, D1, D2, λ1, λ2, μ, ρ)

=
K∑

i= 1

ωi

Pi∑
j= 1

δj

∥∥∥Y (i,j) − X(i,j)C(i,j)
∥∥∥2

F
+ λ1

Q∑
q= 1

∥∥∥V1{k∈Gq}
∥∥∥

2

+ λ2 ‖V2‖1,1 + ρ

2
‖C − V1 − D1‖2

2 +
ρ

2
‖C − V2 − D2‖2

2 (5)

where ρ is augmentedLagrangian parameter which can be
updated iteratively; D1,D2 are the Lagrange multipliers to approx-
imate the residuals between C and V1, V2, respectively. Since the
objective function and constraints are both separable and convex,
ADM method is effective to solve {C, V1, V2, D1, D2} sequen-
tially. We present the algorithm for solving multitask-sglasso by
ADM in Table 1.

Remark 1. We decouple (2) into several small convex opti-
mization problems. Step 3 is a regular least square estimation
on matrix C, where an analytical solution can be derived. Step
4 is a classical sparse group lasso minimization, which can be
solved efficiently by block coordinate decent in Sprechmann et al.
(2011). Step 5 is a simple lasso problem, which can also be solved
by soft-thresholding. The division of complex optimization into

Table 1 | Algorithm of solving multitask-sglasso by ADM.

1 Initialization: k = 0, choose λ1, λ2, μ, ρ, > 0,V0
1, V0

2, D0
1, D0

2

2 Repeat:

3 Ck + 1 ← argminAL
(

C, Vk
1, Vk

2, Dk
1, Dk

2

)
4 Vk + 1

1 ← argminV1
L

(
Ck + 1, V1, Vk

2, Dk
1, Dk

2

)

= argminV1

ρ
2

∥∥∥Ck + 1 − V1 − Dk
1

∥∥∥2

2
+ λ1

∑Q
q= 1

∥∥∥V1{k∈Gq}
∥∥∥

2

5 Vk + 1
2 ← argminV2

L
(

Ck + 1, Vk+1
1 , V2, Dk

1, Dk
2

)

= argminV2

ρ
2

∥∥∥Ck + 1 − V2 − Dk
2

∥∥∥2

2
+ λ2 ‖V2‖1, 1

6 Update Lagrange multipliers

Dk + 1
1 ← Dk

1 − Ck + 1 + Vk + 1
1

Dk + 1
2 ← Dk

2 − Ck + 1 + Vk + 1
2

7 Update iteration k← k+ 1

8 Until some stopping criterion is satisfied
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several simple sub-optimizations will improve the efficiency of
computation.

Remark 2. We adopt the stopping criterion as suggested by
Boyd et al. (2010) that both primal res pri and dual res dual residu-
als must be small, i.e., respri ≤ εpri, resdual ≤ εdual, where primal
residual indicates the difference between C and V1 (V2) while
dual residual measures the difference between V1 (V2) and the
values at the last iteration.

Remark 3. The convergence rate depends on the choice of
Lagrangian parameter ρ. Some studies adjust ρ based on primal
and dual variables iteratively to speed up the convergence. In this
work, we update ρ by keeping the ratio between primal and dual
residual norms within a given interval, say [0.1, 10] until they
both converge to zeros.

For optimization (3), it can similarly be transformed into
ADM formulation where only one splitting variable (i.e., V1) is
needed to separate (3) into two subproblems. The estimation of
V1 at Step 4 can be replaced by:

Vk + 1
1 ← argminV1

ρ

2

∥∥∥Ck + 1 − V1 − Dk
1

∥∥∥2

2
+ λ

Q∑
q= 1

∥∥∥C{k∈Gq}
∥∥∥2

1
(6)

where soft-threshold can be used to get the solution.

STATISTICAL TEST
λ1, λ2, and λ are tuning parameters used to control the number
of genes and features within a gene. The K-fold cross validation is
widely used to select optimal values of these parameters. Briefly,
the subjects are divided into k groups, where k−1 groups of sub-
jects are used for estimating the coefficient matrix C and the rest
group of subjects is used to calculate the prediction error by the
estimated C. We set λ1, λ2, and λ to [100.1, 100.2, . . . , 103] with
30 values. We search the 30× 30 grid to find an optimal combina-
tion of (λ∗1, λ∗2) for multitask-sglasso and similarly optimal value
of λ∗ for multitask-sgridge by 5-fold cross validation. Finally, the
estimate of C can be calculated by the derived optimal parameters.

To test the significance of identified biomarkers with non-
zeros coefficients at C, we construct a gene based statistical test to
measure the strength and significance of the association between
genes and phenotype across experiments from different platforms

and levels. For the i-th gene Gi,
{

Ĉ
(j)
i |j = 1, 2, . . . , T

}
indi-

cates the corresponding coefficient vector estimated from the j-th

experiment, denoted by
[

Ĉ
(j)
i, 1, Ĉ

(j)
i, 2, . . . , Ĉ

(j)
i, mi

]
, where mi is the

number of features annotated to gene Gi in the j-th experimen-
tal dataset. The null hypothesis is there is no association between
the i-th gene and phenotype in all T experiments, denoted by

H0 :
[

Ĉ(1)
i
′
, Ĉ(2)

i
′
, . . . , Ĉ(T)

i
′]′ = 0, vs. the alternative hypothesis

HA : Ĉ(k)
i �= 0, k = 1, 2, . . . , T for some k. To test the hypothe-

sis, we summarize the coefficients of the i-th gene on all datasets
as follows.

Ŝi =

√√√√√
T∑

j= 1

∥∥∥Ĉ
(j)
i

∥∥∥2

2
(7)

where Ŝi, i = 1, 2, . . . , Q is the statistical value on all Q genes.
Due to different number of features included in different genes,
an adjustment for gene size is necessary. A permutation based
approach is used to reduce the potential bias due to varying gene
size. The standardized gene level statistic is given by

S̃i = Ŝi − Ŝ0
i

σ̂i
(8)

where Ŝ0
i and σ̂i are the mean and standard deviation of the i-th

gene under the null hypothesis. Samples are permuted B times
to construct null distribution of Ŝi, denoted by 	̂0

i = {Ŝ0
i,j|j =

1, 2, . . . , B}. Ŝ0
i and σ̂i are then estimated based on permutation

data. Since all Ŝ0
i,j have been normalized, we could pool all 	̂0

i

into a set 	0 = {	̂0
i |i = 1, 2, . . . , Q} as the estimated null dis-

tribution. Therefore, the gene-level p-value of the i-th gene can
be calculated by

pi = # of {	0 ≥ Ŝi}
# of {	0} (9)

SIMULATION
To evaluate the performance of our proposed integrative method
for identifying biomarkers, we simulated two levels of measure-
ments: SNP and gene expression, and assigned different sample
size for each dataset.

For each simulation, we generated 3 SNP datasets and 3 gene
expression datasets. The sample sizes were 600, 400, and 200
for SNP data and 70, 50, and 30 for gene expression, respec-
tively. 200 genes were simulated in each dataset. To mimic the
linkage disequilibrium (LD) structure among SNPs, we chose a
chromosome, chromosome 22, from HapMap CEU panel with
phase III data and sample subjects by software HAPGEN2 (Su
et al., 2011). Those SNPs were kept after the following filters were
applied: (1) Minor allele frequency (MAF) at least 5%; and (2)
Hardy-Weinberg Equilibrium (HWE) with significant level less
than 0.001. We generated a dataset consisting of 15,235 SNPs
which were assigned to 576 genes as the gene pool. Assuming an
additive genetic model, each SNP was recorded as the count of
minor allele (denoted as A) at that locus and thereby was valued
by 0 (homozygote of major allele, aa), 1 (heterozygote, Aa) and
2 (homozygote of minor allele, AA). 200 genes including more
than 10 SNPs were randomly selected from the pool, of which 20
genes were chosen as causal genes and 2 SNPs with MAF from
uniform distribution (Unif) (0.15, 0.25) from each causal gene
were further used to induce causal genetic effects on gene expres-
sion. The number of SNPs from 200 selected genes was randomly
set from Unif(10,100) and those non-causal SNPs in each gene
were selected from pooled SNPs.

We used SNP data to generate gene expression and phenotype
data, referring to the similar method in Huang et al. (2014). Three
SNP datasets with 70, 50, and 30 subjects were first simulated, as
described in the method section. For each causal gene, e.g., gene
i, the expression value Gi was derived from the causal SNPs in this
gene by
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Gi =
n∑

j= 1

SNP
j
causalβj + ε (10)

where n was the number of causal SNPs included in Gi; and βj

indicated the effect of the j-th causal SNP(SNP
j
causal) on Gi. We

set β value from Unif(1, 1.2) and noise ε from normal distribu-
tion N(0, 1). The other non-causal gene expression values were
generated by multivariate normal distribution N(0, �), where �

was the covariance matrix of gene expressions, and the expres-
sions of gene i and j have correlation coefficient 0.3|i− j|. Based on
the simulated gene expression, the phenotype was generated by
the following formula:

logit{Pr(Yi = 1)} =
m∑

j= 1

G
j
causalτj + ε

′
(11)

where m was the number of causal genes, i.e., m = 20 in this

study; G
j
causal was gene expression for the j-th causal gene and τj

was the corresponding effects on the outcome. The logit func-
tion was used to generate binary outcome. The identity func-
tion can be used if the quantitative phenotype was used. ε

′

was non-genetic variable, which was assumed to follow normal
distribution N(0, 1).

RESULTS
SYNTHETIC DATA
We assessed the performance of the two proposed sparse mul-
titask models- multitask sglasso and multitask sgridge-on each
single dataset and all datasets, respectively, and also compared
them with widely used meta-analysis on three SNP datasets

(meta-SNP) and three gene expression datasets (meta-EXP).
Meta-analysis was implemented by the software MetaL (Willer
et al., 2010).

Simulation 1: Fixed effect of causal genes in diverse dataset
In this simulation, we studied the scenario that the effects of
causal genes across diverse datasets were fixed, i.e., τ 1

j = τ 2
j =

· · · = τ 6
j , i = 1, 2, . . . , m, which indicated a causal gene had the

same effect on all datasets. For m casual genes, first, we set a
baseline vector η ∈ Rm from Unif(0.2, 2) and Unif(−2, −0.2).
Next, to evaluate the performance of different methods on iden-
tifying casual genes under different levels of effects, a factor δ =
0, 0.2, 0.4, 0.6, 0.8, 1.0 was multiplied by η to have the final
value of gene effects τ = η × δ. 50 replicates were performed
and B = 500 permutations in each replicate were implemented
to calculate empirical p-value of sparse multitask models. Finally,
we compared the results of the following eight cases: multitask-
sglasso on three expression datasets, three SNP datasets, and all
six datasets; multitask-sgridge on three expression datasets, three
SNP datasets and all six datasets; meta-analysis on three SNP
datasets and three expression datasets.

Figure 1 shows the comparison result of a set of methods
under different values of δ, i.e., [0, 0.2, 0.4, 0.6, 0.8, 1.0].
The ROC curves were plotted using the false positive rate against
true positive rate by varying the p-value threshold from 10−4

to 1. It could be seen that all methods had similar performance
when there were no effective causal genes in all datasets (i.e.,
δ = 0). When the effects of causal genes (i.e., δ) increase, i.e.,
more variability of phenotypes could be explained by genetic
variants, multitask-sglasso method shows better performance by
removing the irrelevant genes with improved signal to noise ratio.
When δ was greater than 0.2, multitask-sglasso methods on SNP,

FIGURE 1 | The ROC curves for the comparison of eight cases: sparse multitask-sglasso and multitask-sgridge methods on three SNP datasets,

expression datasets and all datasets, and meta-analysis on SNP and expression datasets, respectively.
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expression and both datasets significantly outperformed the other
methods. This indicates that Multitask-sglasso method showed
better performance by integrating all datasets than that of using
only one level of data. In addition, when δ was greater than 0.4,
multitask-sglasso method using only SNP or expression datasets
still gave higher power than meta-analysis method. Multitask-
sgridge method had less power than multitask-sglasso method
and only showed better performance than meta-analysis method
when causal genes have high effect sizes.

Simulation 2: Dynamic effects of causal genes in diverse datasets
In this simulation, we consider the situation that a causal gene
has different effects at different levels and platforms. This is
more likely to happen for real datasets since multiple datasets are
usually generated from different studies with different study pro-
tocols, profiling techniques, and experimental platforms, leading
to dynamic effect sizes of casual genes. We aimed to compare
the performance of our sparse multitask methods with meta-
analysis for biomarker identification in this dynamic case. Six
datasets were generated with the same sample size and causal
genes as those in the first simulation study. We simulated the
dynamic effects of causal genes at different datasets by setting τj ∼
N

(
η, σ 2

)
, i = 1, 2, . . . , 6, where η was fixed effect as described

above, and σ was standard deviation indicating the dynamic effect
of genes across datasets. We changed the value of σ from 0 to 1
with the interval of 0.2 to show different extent of heterogeneity
of causal genes across diverse datasets. 50 replicates were averaged
to draw the ROC curve for comparison.

Figure 2 showed the comparison result of eight cases under
dynamic effect models with variance of causal genes varying
from 0 to 1. When σ = 0, the models reduced to the ones with
fixed effects. When σ was greater than 0.4, sparse multitask-
sglasso method on SNP, expression and both datasets significantly

outperformed other methods in identifying casual genes. Except
for sparse multitask-sglasso method, we can also see that the per-
formance of sparse multitask-sgridge on all datasets was better
than meta-analysis methods, which indicated the advantage of
multitask method for integrating diverse datasets.

REAL DATA ANALYSIS
In this study, we took advantage of 3 gene expression datasets and
1 GWAS dataset with bone mineral density (BMD) measurements
from our previous studies. The cohort I of gene expression data
contained 80 Caucasian females, including 40 high and 40 low
hip subjects (Chen et al., 2010b). The cohort II of gene expression
data contained 19 Caucasian females, including 10 high and 9 low
hip BMD subjects (Liu et al., 2005). The cohort III of gene expres-
sion data contained 26 Chinese females, all premenopausal and
including 14 high and 12 low hip BMD subjects (Lei et al., 2009).
For the GWAS dataset, SNP data were obtained using Affymetrix
500K arrays on 1,000 unrelated homogeneous Caucasians. After
a suite of quality control procedures were performed, the SNP set
for subsequent analysis contained 379,319 SNPs, yielding an aver-
age marker spacing of ∼7.9 kb throughout the human genome
(Xiong et al., 2009).

We combined gene expression and SNP datasets to identify
those risk genes of BMD by our sparse multitask-sglasso integra-
tive method. We chose one chromosome 6 containing the largest
number of genes to perform gene-based analysis. 504 genes were
included in the chromosome. More details in each dataset were
given in Table 2.

We applied sparse multitask-sglasso method to SNP, gene
expression and both datasets, respectively. To compare with meta-
analysis, two gene expression datasets with the same level and
experimental platforms, EXP-19 and EXP-80, were used for meta-
analysis, denoted by meta-Exp. The most significant expression

FIGURE 2 | The comparison of eight methods on three SNP and three expression datasets simulated with the dynamic model. The variance of effect
size of causal genes is set to normal distribution with variance varying from 0 to 1 at an interval of 0.2.
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Table 2 | A summary of four datasets from different levels and

platforms used in this analysis.

Data type Platform Gene Genetic Sample

variants

SNP Affymetrix 500K 504 10685 1000

Gene expression HG-U133A 504 874 19

Gene expression HG-U133A 504 1225 26

Gene expression HG-U133A-Plus_2.0 504 874 80

measurement in each gene was chosen to represent signifi-
cance level of the gene. Figure 3 shows the Venn diagram of
gene list by three methods: multitask-sglasso on all gene expres-
sion datasets, multitask-sglasso on all gene expression and SNP
datasets, and meta-analysis on two expression datasets under the
significant threshold 0.05. We could see that there were 45 genes
shared by meta-Exp and multitask-sglasso on three expression
datasets; 10 genes overlapped by meta-Exp and multitask-sglasso
on both SNP and expression datasets; and three genes (“GPR116,”
“HLA-DMB,” “PHACTR1”) identified by all methods. The small
overlapping between multitask-sglasso Exp and multitask sglasso
SNP+ Exp is due to the use of additional information from large
sample size of SNP dataset.

Table 3 lists 7 top significant genes identified and sorted
by their p-values from sparse multitask-sglasso method on all
datasets and the corresponding p-values by meta-analysis. Note
that the p-values of the same gene usually were different in dif-
ferent studies. For example, SOD2 had much lower p-values
in SNP and EXP-26 datasets than those in other datasets. This
difference showed the dynamic effects of genes across diverse
datasets with different levels and platforms. There are three genes
(“TREML2,” “ HTR1E,” and “GLO1”) shared by sparse multitask-
sglasso method on all of datasets and meta-Exp. Except for gene
TREML2, the p-values of genes derived from all datasets were
lower than those from the other methods, indicating higher level
of significance given by our multitask method. The relatively
smaller p-values of these genes in SNP data were due to the large
sample size of SNP dataset, which will give more confidence on
the findings.

To further evaluate the significance of identified genes by
multitask-sglasso, we performed gene level meta-analysis on
three independent BMD studies for validation, more details were
shown in supplementary data. The result (Table S1) listed the
p-values of 24 identified genes based on single studies and meta-
analysis. Most of these genes showed significant effects on BMD
(p < 0.01), indicating the effectiveness of our sparse multitask
regression method in identifying genetic risk factors.

Three shared genes (“TREML2,” “HTR1E,” and “GLO1”) may
have important biological functions related to BMD associated
with osteoporosis. TREML2 (also known as TLT-2) was located
in a gene cluster on chromosome 6 with the single Ig vari-
able (IgV) domain activating receptors TREM1 and TREM2,
while these TREM receptor families were found to participate
in the process of bone homeostasis by controlling the rate of
osteoclastogenesis and regulating the differentiation of osteo-
clasts (Klesney-Tait et al., 2006; Otero et al., 2012). HTR1E was

FIGURE 3 | The Venn diagram of identified genes by three methods:

meta-analysis on EXP-19 and EXP-80 datasets, multitask-sglasso on all

three expression datasets and multitask-sglasso on all gene expression

and SNP datasets.

recently identified to contain SNPs significantly associated with a
linear combination of multiple osteoporosis-related phenotypes
including BMD (Karasik et al., 2012). GLO1, as a binding pro-
tein of methyl-gerfelin (M-GFN), was found to be able to result
in the inhibition of osteoclastogenesis (Kawatani et al., 2008).
Besides these three common genes, our method was also able
to identify other osteoporosis-susceptible genes but was unde-
tectable by meta-analysis. For instance, SOD2 has been identified
as the gene susceptible to osteoporosis in our previous inte-
grative analysis of mRNA, SNP, and protein data (Deng et al.,
2011). It may play a significant role in BMD variation and
pathogenesis of osteoporosis. HDAC2, as a member of histone
deacetylases (HDACs), was found to play a critical role in bone
development and biology (McGee-Lawrence and Westendorf,
2011). These genes were missed out with meta-analysis but
can be detected with our proposed method, showing improved
sensitivity.

CONCLUSION AND DISCUSSION
In this work, we proposed a multi-omics integration method,
i.e., sparse group multitask regression model, which can inte-
grate multiple genomic datasets from different levels, platforms,
and subjects for gene based analysis. An efficient computational
algorithm based on ADM was provided for its solution. The
performance of the model was compared with meta-analysis
in simulation datasets. The simulation results showed that our
sparse group multitask regression model can increase the power
of detecting risk genes by integrating multiple diverse datasets
effectively. In particular, multitask-sglasso model outperformed
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Table 3 | The top 7 identified genes and their p-values by sparse multitask-sglasso method in bone mineral density studies.

�������Gene ID

Methods
SNP EXP-19 EXP-26 EXP-80 EXP_all Meta-EXP SNP + EXP

SOD2 0.0021 0.9136 0.0017 0.9566 0.7152 0.0752 0.0016

TREML2* 0.0014 0.1295 0.5243 0.1648 0.1665 0.0312 0.0018

HTR1E* 0.0030 0.4062 0.3481 0.0963 0.0750 0.0203 0.0023

HDAC2 0.0067 0.0089 0.1118 0.4382 0.4360 0.0553 0.0032

HCRTR2 0.0045 0.1074 0.5972 0.3293 0.3282 0.6297 0.0044

MUT 0.0073 0.2173 0.7665 0.9763 0.9910 0.571 0.0055

GLO1* 0.0084 0.0651 0.6182 0.1012 0.1298 0.0183 0.0073

* Genes identified by both meta-Exp and sparse multitask-sglasso on all datasets.

meta-analysis method in simulations on genes with both fixed
and dynamic effects. Our real data analysis on osteoporosis stud-
ies identified significant genes but missed by meta-analysis, and
these genes were reported to be highly susceptible to BMD
and osteoporosis. Overall, the advantages of our sparse group
multitask regression method for biomarker identification from
multiple omics datasets include: (1) it can combine diverse and
complementary omic datasets without; (2) group the features
by gene or gene set to account for the group structures in data
(e.g., LD structure, co-expression, and genetic regulatory net-
work); (3) remove irrelevant genes and/or features within a gene
simultaneously.

Our proposed sparse multitask regression model provided a
general framework for integrative analysis of diverse datasets.
To fuse multiple diverse datasets, we considered the regression
on each single dataset as a single task and then combined all
single tasks into the model. Two sets of parameters were used
in the model. ωis were used to weight object functions (i.e.,
data fitting term at each level) different levels, while δj were
used for different platforms. Similar to other works, we set ω

to be equal by assuming each level of genetic data contains
the same information (Ma et al., 2011). We assign δj to the
data from different platforms by their sample sizes (Wilson and
Lipsey, 2001). Other methods can also be applied to estimat-
ing weights such as Kaplan–Meier estimate (Liu et al., 2013)
and inverse variance (Wilson and Lipsey, 2001). In order to
account for the group effects and reduce the large number of
features, we used two group sparse penalties in our multitask
regression models, i.e., sparse group lasso and sparse group ridge,
respectively. These penalties can perform feature selection at both
group level and individual for multiple dataset levels, showing
better performance than those of using lasso and group lasso
penalties for single dataset analysis. Similar regression models
were also recently proposed for using two-level sparse group
penalties such as group bridge and group MCP (Huang et al.,
2012). Ma et al. has recently applied these penalties in regression
model for cancer studies to identify those risk oncology genes
by integrating multiple expression level datasets from different
cancer studies (Liu et al., 2013). Chen et al. has also compared
and found that sparse group ridge outperformed group bridge
penalty in single dataset regression model (Chen et al., 2010c).
However, no study has been performed to compare them for
multiple dataset integration and further work is needed in this
direction.

WEB SOURCES
The gene expression datasets from three cohorts can be
accessed in GEO database (http://www.ncbi.nlm.nih.gov/geo/)
with the following accession numbers: 19 Caucasians BMD study
(GSE2208), 26 Chinese study (GSE7158), and 80 Caucasians
study (GSE56815).
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