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Abstract

Copy number variations (CNVs) can be used as significant bio-markers and next generation 

sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features 

from CNVs and further apply them to genomic studies such as population clustering have become 

a big challenge. In this paper, we propose a novel method for population clustering based on 

CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this 

feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix 

factorization (NMF). The source matrix consists of common CNVs that are shared by all the 

samples from the same group, and the weight matrix indicates the corresponding level of CNVs 

from each sample. Therefore, using NMF of CNVs one can differentiate samples from different 

ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of 

both simulation data and two real data set from the 1000 Genomes Project. The results on 

simulation data demonstrate that the proposed method can recover the true common CNVs with 

high quality. The results on the first real data analysis show that the proposed method can cluster 

two family trio with different ancestries into two ethnic groups and the results on the second real 

data analysis show that the proposed method can be applied to the whole-genome with large 

sample size consisting of multiple groups. Both results demonstrate the potential of the proposed 

method for population clustering.
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1. Introduction

Next generation sequencing (NGS) technology has become the leading platform for 

genotyping and genomic variation discovery.1 Unlike traditional technologies such as 

fluorescence in situ hybridization (FISH) and array comparative genomic hybridization 

(aCGH), NGS provides a direct way to study human genome at the level of base pair, and 

thus achieved unprecedented resolution. Based on shotgun sequencing, NGS is characterized 

by its high throughput, enabling output of millions or billions short reads. Recently, various 

biological and medical studies utilize NGS platforms for de novo assembly,2 single 

nucleotide polymorphisms (SNPs) calling,3 structural variations (SVs) detection,4 and 

transcriptome profiling.5

Copy number variation (CNV)6 has been discovered widely in human and other mammal 

genomes, involving a duplication or deletion of DNA segment of size more than 1 kbp.7 

Similar duplication and deletion events also occur in somatic cells, which are termed copy 

number alteration (CNA) in oncology. Iafrate et al.8 showed that CNVs are present in 

human genomes with high frequency (more than 10%). It has been reported that several 

complex diseases such as autism,9 schizophrenia,10 Alzheimer disease,11 cancer,12 

osteoporosis13 etc., are associated with CNVs. It is believed that if a CNV region harbors a 

dosage-sensitive segment, gene expression level varies, and consequently leads to the 

phenotype abnormality.14

Several researches have been carried out for CNV phenotype association9–12 and CNV 

detection from NGS data15–18; however, the application of CNVs for population study such 

as the clustering of ethnic groups is still limited. Magi et al.19 showed that samples 

consisting of two family trios with different ethnicity can be clustered with their CNV 

profiles. Pearlman et al.20 showed that patients with prostate cancer can be classified into 

subgroups with different metastatic potential based on their CNA profiles. Their studies 

suggest that CNV/CNA profile maybe utilized to find bio-markers for group classification or 

population clustering. Based on their studies, in this paper we show that common CNV, 

which is a concurrent CNV event occurring at the same genomic location among samples, is 

a good bio-marker for population clustering.

The proposed population clustering approach based on CNVs consists of five steps: (1) Raw 

short reads from NGS platform are aligned (or mapped) to the human reference genome (or 

template, e.g. HG19/NCBI37) with standard alignment tools such as Bowtie21 or MAQ.22 

(2) Depth of coverage (DOC)23 or read depth signal is extracted from the alignment data 

file. (3) The read depth signal is corrected with G-C content.24 (4) CNVs are detected for 

each sample with CNV-TV that we recently proposed.18 (5) Samples are clustered into 

groups with non-negative matrix factorization (NMF) method25 based on extracted features. 

The NMF is a source separation technique,26 which can cluster common information from 

multiple data sources.27 We use the NMF to decompose the matrix consisting of CNVs of 

all samples into two non-negative matrices, i.e. a source and a weight (or proportion, 

contribution) matrix. The source matrix contains common CNVs, while the weight matrix 

shows the contribution or the proportion of common CNVs from each sample, thereby 

revealing differences between sub-populations.
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The paper is organized as follows. First, we outline the models used for CNV detection and 

population clustering. To evaluate the performance of our method, we apply them to analyze 

both simulated and two real data set from the 1000 Genome Project. Finally, we discuss the 

potential application of the method and some open questions.

2. Methods

2.1. CNV detection from single sample

NGS is characterized by shotgun sequencing, which samples reads randomly from the 

genome. Therefore, the read depth signal obeys the Poisson distribution, whose density 

parameter (which is equal to the mean and variance) is locally proportional to the copy 

number. A flat region indicates no CNV event, while a basin or plateau region indicates a 

copy number deletion or duplication. Mathematically, the detection of CNVs from read 

depth signal can be formulated as a change-point detection problem.28 In fact, there are 

several publicly available CNV detection tools, such as CNV-seq,17 event-wise testing 

(EWT),16 and SegSeq.15 Since we use CNVs to cluster population, the detection results 

affect the final output directly. Hence the selection of CNV detection tool should be 

carefully considered. Based on our comprehensive study of those available tools,29 we show 

that total variation (TV) regression based approach, i.e. CNV-TV,18 achieves more reliable 

detections with robust performance than several existing methods. As a result, CNV-TV is 

used as the detection tool. In the following part, we give a brief introduction to CNV-TV.

The CNV-TV model first fits the read depth signal with the TV penalized least squares:

(1)

where N is the length of the read depth signal; yi,(i = 1,2,…, N) is the read depth signal after 

G-C content correction; and xi is the recovered piecewise constant signal. The first term in 

(1) takes the randomness of read depth into account, and the second term is the TV penalty. 

Within a region with no copy number changes, xi = xi+1, so no penalty is imposed. At the 

border between a CNV and non-CNV region there is a change-point, xi ≠ xi+1, a penalty |xi+1 

− xi| is imposed. λ is the regularization parameter that controls the number of detected 

CNVs; large λ’s yields few detections (e.g. if λ is infinity, x1 = x2 = ⋯ = xN) and vice-versa. 

The CNV-TV utilizes Schwarz information criterion (SIC)30 to find optimal parameter.18

Once CNVs are detected for a given sample, a feature vector x can be formed as follows: 

For each CNV region and the rest region (non CNV region), the mean of read depth signal 

within the region is used. Since different sample may have different coverage, x’s are 

normalized such that non CNV region has same value across samples. In the following part, 

we consider the population clustering based on the feature vector x’s in the context of source 

separation.26

2.2. Population clustering based on CNVs

The source separation techniques first arise in signal processing community. An example is 

the cocktail party problem, i.e. recovering different speakers’ voices from their mixtures 
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recorded by a set of microphones.31 The most suitable model for population clustering is the 

instantaneous mixture,26 which assumes that a mixture xm is the weighted-sum of unknown 

sources:

(2)

where wjm denotes the weight of the jth source sj in the mth mixture xm. The corresponding 

matrix form reads:

(3)

where X = [x1, x2,…, xM] collects the M mixtures; S = [s1, s2,…, sJ] is the J sources; and W 
= [wjm] is the weight coefficient matrix.

Suppose that a population X contains M samples that derive from J ancestries. By 

factorizing X into S and W, the J ancestries can be recovered as the J columns stored in S, 

and the contribution of each ancestry in the mth mixture sample forms the mth column of 

weight matrix W. Suppose two samples, say the m1 and m2th sample, derive from the same 

ancestry, say the jth source, then the jth entry of the m1 and m2th column in W is relatively 

larger than the rest; therefore, these two columns should be clustered into the same group. In 

other words, by clustering the columns in W, cluster patterns among the samples can be 

discovered.

It’s obvious that the factorizations are not unique and there are infinite number of solutions, 

some prior knowledge or constraint about matrix S and/or W are required to enforce 

identifiability, depending on the specific application at hand. In signal processing 

community, the sources sj’s are usually assumed to be statistically independent, and hence 

famous algorithms such as independent component analysis (ICA)32 were proposed. 

However, ICA may yield negative S and W, which make the solution biologically 

unexplainable with the non-negative NGS read depth data. It makes sense that both S and W 
should be non-negative matrices, since the former represents the read depth signals of the 

sources, while the latter represents the weight or contribution of each source. As a results, 

the NMF approach25 is a natural choice. Similarly, in image processing and document 

mining (where the input data matrices are also non-negative as well as the factorization 

matrices), Lee and Seung demonstrated27 that NMF can effectively learn common 

information from the mixtures of patterns. Therefore, by ultilizing NMF, common CNVs are 

expected to be recovered, which will be used next to discover cluster patterns.

Lee and Seung27 proposed a multiplicative update algorithm to solve (3):
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This method is quite easy to implement. However, several works showed that the 

convergence is not guaranteed.33 Even though in most cases it converges, the computational 

speed is low. Therefore, an alternative algorithm based on projected gradient33 was used for 

our sequence data.

Finally, we discuss the ambiguity issue in model (3),25,34 i.e. the factorization cannot be 

uniquely determined. Even constrains are imposed, there are still several candidate 

solutions. There are two ambiguities: permutation ambiguity and scale ambiguity. (1) The 

order of sources is ambiguous up to a permutation. For a given S and W, if one permutates 

the columns of S, and permutates the rows of W accordingly, their product does not change 

at all. (2) The scale (or amplitude) of each source is ambiguous up to a scalar. For a given S 
and W, if one multiplies any column of S with a nonzero value, say α, while divides the 

corresponding row of W by α, the product keeps the same. These two ambiguities will be 

demonstrated in the simulation. As a result, further constraints should be imposed to have a 

unique decomposition; for example, the median of each source is required to be a predefined 

value. However, since the ambiguity issue does not affect the clustering results and the 

common CNV discovery, we do not impose any constraint.

3. Results

3.1. Simulation

In the simulation study, two genomes of size 2 Mbp were first simulated, and then three 

CNVs were artificially introduced into each genome with random size between 3 kbp and 

200 kbp. Each CNV has an equal chance to be a homozygous deletion, heterozygous 

deletion or heterozygous duplication, corresponding to copy number 0, 1, and 3 respectively. 

We only consider these three cases since these CNVs are both most common and difficult to 

detect.35 The read depth signals s1 and s2 were simulated (see Fig. 1) such that each has the 

normal (corresponding to copy number 2) read depth of 200 reads per 1 kbp on average. 

Then following the mixture model (3), 6 mixed read depth signals yi,(i = 1,2,…,6) were 

generated. These six samples were divided into two groups (see Fig. 2). For the first three 

samples, the weight of the first source w1m, (m = 1, 2, 3) obeys the uniform distribution at 

interval [0.5,1], while for the second group, w1m, (m = 4, 5, 6) obeys the uniform distribution 

at interval [0, 0.5]. The weight of the second source w2m, (m = 1, 2,…, 6) is 1 – w1m such 

that the sum of weights for a sample is equal to 1. To take the sequencing error into account, 

a random noise following Poisson distribution with variance 20 (representing 10% 

unmapped reads) was subtracted from the mixed read depth signals. Figure 2 displays an 

example of the simulated data set.

After each of the 6 read depth signals was processed by the CNV-TV,18 CNVs were 

obtained. Then a data matrix X of size 2000 × 6 was constructed. Afterwards the NMF code 

written by Lin33 was used to decompose X into the source matrix S of size 2000 × 2 and 

weight matrix W of size 2 × 6. The algorithm was initialized with a random positive matrix 

S0 and W0. Tolerance, limit of time, and maximal iteration number were set to 1e—3, 30, 

and 1e3, respectively. Figure 3 shows the first and second column of S, which are the 

estimates of s1 and s2. Since the NMF has permutation ambiguity, the first column of S after 

NMF corresponds to the estimate of the first source in some cases or the second source in 
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other cases. The same situation occurs for the second column of S. Since each mixture 

includes both sources, there are leaks between the source estimates; e.g. at the location 1500 

kbp, the first estimate has a small peak which is from the second estimate at the same 

location. The clustering result of the columns of weight matrix W is displayed in Fig. 4. It 

can be seen that the two groups are clearly separated.

Considering the scale ambiguity, to measure how close an estimate is to its real one, the 

Pearson correlation was calculated. For each source estimate (a column of S after NMF), the 

Pearson correlations between the estimate with both s1 and s2 were calculated, and displayed 

in Fig. 5. If ŝ is a good estimate of s1, the correlation should be high (close to 1), and the 

correlation with s2 should be low (close to 0). As shown in Fig. 5 with 100 random 

simulated data set (blue dots and red circles represent the first and second source estimate 

respectively), there are two clusters around (0,1) and (1,0), indicating that the estimates are 

highly consistent with real ones. Note that the blue dots and red circles distribute evenly due 

to the permutation ambiguity. Furthermore, the correlation between the estimated and real 

weights w always reaches as high as 0.99 and above.

It is reported that NMF is sensitive to the initialization,36 i.e. the factorization results 

changes with different initialization of S0 and W0. So we studied whether this affects the 

clustering performance. We used NMF to decompose a same data set with different 

initialization strategies reported by Langville et al.,36 and the results show that random 

initialization is the best for our problem. The correlations of s are shown in Fig. 6, where 

100 different random positive matrices were used as initial matrices S0 and W0. The 

clustering results of W did not change, indicating the little effect of initialization.

3.2. Real data processing

Two real data sets from the 1000 Genomes Project37 were analyzed. The first data set is 

from the family trio project, one of the three pilot studies. In this pilot project, the whole-

genomes of two family trios were sequenced, including a CEU (Utah residents with northern 

and western European ancestry) trio: NA12878-daughter, NA12891-father and NA12892-

mother, and a YRI (Yoruba in Ibadan, Nigeria) trio: NA19238-mother, NA19239-father and 

NA19240-daughter. Since the genomes of the six samples are sequenced with high 

sequencing coverage (42×), we only use the data from chromosome 21 as a demonstration. 

The preliminary results were presented in our earlier conference paper.38 To further test the 

approach on the whole-genome with larger sample size, the second data set is obtained from 

the low coverage pilot project, with coverage 2–6 ×. We selected 15 subjects including five 

CEU samples with Coriell ID NA12004, NA12006, NA12044, NA12156, and NA12287, 

five YRI samples with Coriell ID NA18505, NA18508, NA18511, NA18517 and NA18523, 

and five JPY (Japanese in Tokyo, Japan) samples with Coriell ID NA18940, NA18942, 

NA18943, NA18944, and NA18947. These data are from various sequencing platforms; 

only the data from the Illumina platform SLX were selected. Since the raw short reads were 

already mapped to NCBI36 with MAQ,37 the BAM files were downloaded from the 1000 

Genomes Project FTP (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/), which 

store the alignment information.
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3.2.1. Family trio data set—First, SAMtools39 was used to generate the DOC profile 

from the downloaded BAM file. Since the sequencing coverage is high (42×), the window 

size was set to 1 kbp to achieve high resolution. The read depth bias is corrected with the G-

C content profile by the method of Abyzov et al.24 Then CNV-TV that we proposed18 was 

used to detect CNVs. Figure 7 shows the detected CNV regions of the six samples within 

genomic coordinate 40–46 Mbp. We note that each sample of YRI trio has a CNV near 

genomic coordinate 44.75 Mbp. Afterward X was built and NMF was utilized for 

decomposition. Figure 8 displays the hierarchical cluster of W, and Fig. 9 displays the 

common CNVs. Interestingly, Fig. 8 shows that the first source estimate has higher weight 

in the YRI trio compared with the CEU trio (right half of w1 is “hotter” than the left half). 

By comparing the two signals in Fig. 9, we found that the first source estimate has a 

significant CNV that locates near coordinate 44.75 Mbp; this CNV is a common CNV that 

can significantly differentiate CEU trio from YRI trio. To further verify this result, the read 

depth signals of the six individual samples are displayed in Fig. 10. It is clear that all the 

read depth signals of YRI trio have peaks at location 44.75 Mbp, while those of CEU trio do 

not. This example demonstrates that the proposed method can better identify common CNVs 

or differentiate samples from different origins.

It is worthwhile to compare a related work published earlier by Magi et al.,19 in which a 

method called JointSLM was proposed to detect common CNVs from multiple samples. In 

that work, the same family trio samples were used to test the performance, and the cluster 

result was shown in Fig. 4 therein. Compared with their results which was obtained from 

chromosome 1, our cluster result in Fig. 8 is consistent except that the YRI daughter 

(NA19240) is closer to her mother (NA19238) than her father (NA19239) in genetics. It was 

shown that the matrix X containing the CNVs can be used directly for clustering. Compared 

with their methods, our proposed clustering method permits whole-genome analysis based 

on the weight matrix W in NMF. Recall that the column number of X is the sample size, and 

the row number of X is the number of windows along the genome. So, if one clusters the 

columns of X as JointSLM does, there will be difficulty in running whole-genome analysis, 

since the columns are very long vectors. By factorizing X, the resulting W becomes a small 

matrix whose column number is the sample size, and the row number is the source number 

J, bounded by the sample size. Therefore, clustering the columns of W is more feasible even 

for very large sample size.

3.2.2. Low coverage population data set—For the second data set, since the 

sequencing coverage is low (2–6×), a nonoverlapping window with a width of 10 kbp is 

used to guarantee that each read depth signal has median value not lower than 100. To 

normalize the read depth signal due to different sequencing coverage across samples, each 

signal was scaled such that the median read depth is 100.

After CNVs are detected with CNV-TV,18 21 data matrices are formed, corresponding to 21 

chromosomes. Each data matrix has 15 columns, corresponding to the 15 samples. The row 

number of each data matrix is determined by the length of the chromosome, i.e. the length of 

chromosome divided by the window size. Then NMF is applied to discover common CNVs 

by decomposing each data matrix X into S and W. As is shown in the first real data analysis, 

W can be used to cluster samples, and S indicates the common CNV regions that have 
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similar read depths across samples from the same group, but different read depth across 

groups.

Since the whole genome is too long, the NMF decomposition is carried out on each 

chromosome separately. To integrate the whole genome information for a better clustering, a 

filtering was used to keep only the common CNV regions, where the read depth from the 

three groups are significantly different (at least one pair t-test with p-value lower than 1e—

3). These regions are listed in supplementary material. Figure 11 displays the clustering of 

the read depth signals within those regions. It is shown that three group patterns is 

discovered by integrating the information from the whole genome.

To test whether the detected common CNV regions can be used as bio-markers to classify 

the three groups of samples, we used the leave one out (LOO) cross validation.40 In each 

validation, one sample was taken out from the 15 samples as the independent test data, and 

the remaining 14 samples were used to train a classifier. Here, we used the sparse 

representation based classifier that we proposed before.41 The results show that three groups 

can be classified without errors by using these CNV regions as bio-markers.

Studies of CNVs with diverse populations have found significant differences in the 

frequencies of CNVs among distinct ethnic groups.6,42 In our study, unsupervised 

hierarchical clustering analysis showed that significant differences exist in terms of CNVs 

among the three ethnic groups. These results suggested the CNVs can be used as bio-

markers to classify the three different ethnic populations. We made a comparison of the 

identified 73 CNV calls (supplementary material) with those in the Database of Genomic 

Variants (DGV, http://projects.tcag.ca/variation/), a main repository for DNA CNV. It 

revealed that 69 of the CNV calls overlap more than 50% with the previously reported CNV 

regions. Among the identified CNVs, some have been indicated as ethnic specific CNVs. 

For example, we observed the CNV at region 59.92–60.06 Mbp of chromosome 19, 

including the loci of killer immunoglobulin-like receptor (KIR) gene family. KIR genes are 

part of the leukocyte receptor complex (LRC), on chromosome 19q13.4. KIR genes 

modulate the development and activity of natural killer (NK) and some T-cells through 

interaction with major histocompatibility complex (MHC) class I receptors. These different 

KIR loci are highly polymorphic and specific to ethnic groups.43,44 Our findings may 

provide a better understanding of genomic differences across ethnic groups in terms of 

CNVs.

4. Conclusion

We have proposed a method that can cluster human samples of different genetic ethnicity 

based on their high-throughput sequencing data. The method can be summarized in three 

steps. In the first feature extraction step, CNVs are extracted from the read depth signal from 

the raw sequencing data. In the second step, the matrix consisting of the feature is factorized 

into two non-negative matrices, namely a source matrix and a weight matrix. Finally, the 

weight matrix can be used to cluster the samples into different ethnic groups and the source 

matrix can be used to discover common CNVs. We have applied the method to both 

simulated and real data analysis. We note that only data from the Illumina platform was 

Duan et al. Page 8

J Bioinform Comput Biol. Author manuscript; available in PMC 2015 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://projects.tcag.ca/variation/


tested, but the method is applicable to other NGS platforms. This method can also be 

extended for other purposes such as subtyping.45

There are still two open questions. The first lies in the determination of the source number J. 

This parameter needs to be defined before running NMF. If the cluster number is known in 

advance, there would be no problem. Otherwise, we propose to first use a large value and 

then gradually decrease it until a good cluster pattern is found. The second is the choice of 

the window size when counting the read depth signal. Use of a large window size can 

improve the reliability of CNV detection, but may miss small yet significant CNV due to 

low resolution. Therefore, further studies are needed to find a good tradeoff.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An example that demonstrates two source read depth signals s1 and s2 in the simulation 

study.
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Fig. 2. 
The six samples mixed from the two sources displayed in Fig. 1. The first three have larger 

contribution from the first source than the last three, and therefore they form a group. The 

last three form another group.
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Fig. 3. 
The first (upper penal) and second (lower penal) column of source matrix S after the NMF. 

Note that there is a permutation ambiguity, in fact the first column corresponds to s2, and the 

second column corresponds to s1. There is also slightly scale ambiguity; note that the base 

lines are not the same.
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Fig. 4. 
Hierarchical cluster of the weight matrix W of the simulated data set. The two rows labeled 

w1 and w2 represent the weights of the two source estimates.
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Fig. 5. 
The Pearson correlations between the source estimates ŝi,(i = 1,2) and original sources si,(i = 

1,2). Red circles/Blue dots represent the first/second column in source estimate matrix Ŝ, 

namely, ŝ1/ŝ2. Note that since there is a permutation ambiguity, both red circles and blue 

dots distribute evenly at the two clusters.
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Fig. 6. 
The Pearson correlation display as Fig. 5. This figure shows the effect of initialization. The 

same data set was used but with 100 different random initialization of W0 and S0.
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Fig. 7. 
Detected CNV regions within 40–46 Mbp. The amplitude of each spike represents the DOC 

value.
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Fig. 8. 
Hierarchical cluster of the contribution matrix W of the first read data set.
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Fig. 9. 
The detected common CNV regions of the first/second column (upper/lower penal) of 

source matrix S within 40–46 Mbp.
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Fig. 10. 
The read depth signals of six individual samples within 40–46 Mbp.
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Fig. 11. 
Hierarchical cluster of the whole genome of the second real data set.
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