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The exterior algebra offers a computational and conceptual tool which can be in-

troduced in sophomore multivariable calculus with a minimum of formalism. The

purpose of this note is to demonstrate how that can be done for the ordinary second

year calculus student from the very beginning of his or her study.

Although the formulations in this paper have been carried out in n-dimensional

Euclidean space, which might strike some readers as notationally forbidding, each

proposition can be stated and proved in three our four dimensions to avoid this

notational generality, and except for notation, all statements and proofs will not

differ from the n-dimensional version.

When the exterior algebra is available from the outset in a sophomore calculus

course, it can be used to discuss k-dimensional planes, simultaneous linear systems

of equations, linear transformations and all aspects of multivariable integration, the

gradient, divergence and curl culminating in a single Stokes’ theorem for differential

forms which subsumes all of the separate Green, Gauss, divergent and classical Stokes

results.

Cartan originally introduced the exterior algebra in order to simplify calculations

with integrals. Not only are calculations simplified, but also concepts become unified,

geometric, and easy to remember. After fifty years it is surprising not to find these

techniques incorporated into the standard calculus curriculum at an early stage.
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In this paper we will presume the standard introduction to vectors and the inner

(dot) product which appears in every multivariable calculus text.

1. Wedge Product

Definition 1. Let v1, v2, . . . , vk be k vectors in Rn. Define the wedge product

v1 ∧ v2 ∧ · · · ∧ vk by stipulating that

(i) v ∧ v = 0 for any vector v ∈ Rn.

(ii) v ∧ w = (−1)w ∧ v for any vectors v and w in Rn.

(iii) With the exception of (i) and (ii) all algebraic rules which apply to “ordinary

multiplication”, also apply to “∧”.

Let ek = (0, . . . , 0, 1, 0 . . . 0) ∈ Rn and let In = {1, 2, . . . , n}.

v1 ∧ v2 ∧ · · · ∧ vk =

(
n∑

i=1

ai1 ei

)
∧

(
n∑

i=1

ai2 ei

)
∧ · · · ∧

(
n∑

i=1

aik ei

)
=

∑
(i1,i2,...,ik)∈Ik

n

ai11, ai22, ai33 . . . ainkei1
∧ ei2

∧ · · · ∧ eik

=
∑

(i1,i2,...,ik)∈Ik
n

iα 6=iβ ;1≤α,β≤k

ai11, ai22 . . . ainkei1
∧ ei2

∧ · · · ∧ eik
,

by applying (i),

=
∑

i1<i2<···<ik
(i1,i2,...,ik)∈In

k

(−1)γai11, ai22 . . . ainkei1
∧ ei2

∧ · · · ∧ eik
,

by applying (ii),

where γ denotes the number of transpositions required to obtain i1 < i2 < · · · < ik.

Any k-fold wedge product can be expressed in this reduced form.
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Note: This should be demonstrated concretely in R3 or R4. Students, without

mastering the above formalism, can adapt without difficulty to putting the wedge

product of vectors in Rn into reduced form.

Definition 2. In reduced form v1 ∧ v2 ∧ · · · ∧ vn = c e1 ∧ e2 ∧ · · · ∧ en and c is the

determinant of the matrix,


a11 a12 . . . a1n

a21 a22 . . . a2n

an1 . . . . . . ann


where vj =

n∑
i=1

aijei, for j = 1, 2, . . . , n. Restating,

c = det(aij) , 1 ≤ i, j ≤ n .

This definition is stated because the usual sophomore is unfamiliar with determi-

nants larger than 3×3. Though inefficient, determinants so defined, can be computed

in higher dimensions using this definition.

Definition 3. Define ‖v1 ∧ v2 ∧ · · · ∧ vk‖2 = det


v1 · v1 . . . v1 · vk

v2 · v1 . . . v2 · vk
...

...
vk · v1 . . . vk · vk

 ·

‖v1 ∧ v2 ∧ . . . vn‖ is called the length of the wedge product v1 ∧ v2 ∧ · · · ∧ vk.

Agreement of this definition with the usual definition of length ‖v‖ of a vector v in

R3 follows from ‖v‖2 = v · v.

Definition 4. Let v1, v2, . . . , vk ∈ Rn. And define

P(v1, v2, . . . , vn) =

{
k∑

i=1

civi : 0 ≤ ci ≤ 1 , ci ∈ R

}
.
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P(v1, v2, . . . , vn) is called the parallelipiped determinant by v1, v2, . . . , vk.

Again a demonstration of the definition of R2 and R3 motivates the student.

2. Fundamental Facts about the Wedge Product

Theorem 1. For v1, v2, . . . , vk ∈ Rn,

‖v1 ∧ v2 ∧ · · · ∧ vk‖ = volkP(v1, v2, . . . , vk)

where volk is understood traditionally as volume of the (k−1) dimensional base times

the altitude.

Proof. Proceed by induction on k. The k = 1 case is trivial. Now to show the (k− 1)

case implies the k case, write

vk = x +
k−1∑
i=1

civi where x ⊥ vi , i = 1, 2, . . . , (k − 1) .

Then ‖v1∧v2∧· · ·∧vk‖2 = ‖v1∧v2∧· · ·∧vk−1∧x‖2 =
(
det(vi · vj)1≤i,j≤k−1

)
(x ·x) =

vol2k−1P(v1, v2, . . . , vk−1)‖x‖2. Therefore,

‖v1 ∧ v2 ∧ · · · ∧ vk‖ = volkP(v1, v2, . . . , vk−1, vk) .

Theorem 2. For v1, v2, . . . , vk ∈ Rn,

‖v1, v2 ∧ · · · ∧ vk‖2 =
∑

a2
i1,i2...ik

where v1 ∧ v2 ∧ · · · ∧ vk =
∑

i1<i2<···<ik
1≤i,j≤n

ai1,i2...ikei1
∧ ei2

∧ · · · ∧ eik
.
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Remark. This theorem provides the student with an easier way to compute

‖v1 ∧ v2 ∧ · · · ∧ vk‖ coinciding with the way vector lengths are calculated. Sim-

ply put the wedge product into reduced form and take the square root of the sum of

the squares of the coefficients.

Proof. The proof is by induction using the reduction of the previous proof.

‖v1 ∧ v2 ∧ · · · ∧ vk−1‖2 =
∑

i1<i2<···<ik−1
1≤i,j≤n

ai1,i2...ik−1
= det

(
vi, vj

)
1≤i,j≤k−1

.

But ‖v1 ∧ v2 ∧ · · · ∧ vk‖2 = det(vi · vj)1≤i,j≤k =
(
det(vi · vj)1≤i,j≤k−1

)
(x · x) =∑

i1<i2<···<ik
1≤i,j≤n

a2
i1,i2...ik

. The k = 1 case is trivial.

Theorem 3. For v1, v2, . . . , vk ∈ Rn,

v1 ∧ v2 ∧ · · · ∧ vk = 0 if and only if vj =
∑
i=1
i6=j

aivi for some j, 1 ≤ j ≤ k .

Proof. (if) v1 ∧ v2 ∧ · · · ∧ vk = v1 ∧ v2 ∧ · · · ∧
k∑

i=1
i6=j

aivi ∧ · · · ∧ vk = 0.

(only if) v1 ∧ v2 ∧ · · · ∧ vk = 0 implies by Theorem 1 that volkP(v1, v2, . . . , vk) = 0.

Hence one of the vectors v1, v2, . . . , vk is a linear combination of the others.

N.B. “_” indicates that symbol is omitted.

Definition 4. The ∗-operator on an (n − 1)-fold wedge product Rn is defined as

follows:

(i) ∗-operator is linear.

(ii) ∗(e1 ∧ e2 ∧ · · · ∧
_
e j ∧ . . .

−
en) = (−1)j−1ej
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The ∗-operator on an n-fold wedge product in Rn is defined as follows:

(i) ∗-operator is linear.

(ii) ∗(e1 ∧ · · · ∧ en) = 1.

Theorem 5. For w1, v1, v2, . . . , vn−1 ∈ Rn,

(w ∧ v1 ∧ v2 ∧ · · · ∧ vn−1) = w · ∗v1 ∧ v2 ∧ · · · ∧ vn−1 .

Comment. Theorem 5 can be used to reinforce the role of the wedge product in

computing volumes of parallelepipeds, since

‖ ∗ v1 ∧ v2 ∧ · · · ∧ vn‖ = ‖v1 ∧ v2 ∧ · · · ∧ vn‖

=

∣∣∣∣ v

‖w‖
· vn

∣∣∣∣ ‖w‖
= Volume of the base × altitude.

Proof. If v1 ∧ v2 ∧ · · · ∧ vn−1 =
n∑

j=1

a
12...

_
j ...n

e1 ∧ e2 ∧ · · · ∧
_
e j ∧ . . . en, and w =

n∑
j=1

wiei,

then

∗

(
n∑

j=1

a
12...

_
j ...n

e1 ∧ e2 ∧ · · · ∧
_
e j ∧ . . . en

)
· w =(

n∑
j=1

(−1)j−1a
12...

_
j ...n

ej

)
·

(
n∑

j=1

wjej

)
=

n∑
j=1

(−1)j−1a
12...

_
j ...n

wj . And

∗
(
w ∧ v1 ∧ · · · ∧ vk

)
= ∗

(
w ∧

n∑
j=1

a
12...

_
j ...n

e1 ∧ · · · ∧
_
e j ∧ . . . en

)
=

n∑
j=1

(−1)j−1a
12...

_
j ...n

wj .
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Theorem 6. For v1, v2, . . . vn−1 ∈ Rn, ∗v1 ∧ v2 ∧ · · · ∧ vn−1 is a vector w satisfying

(i) w · vj = 0 (w ⊥ vj) for 1 ≤ j ≤ n− 1.

(ii) ‖w‖ = voln−1P(v1, v2, . . . , vn−1).

Proof. w ·vi = (∗v1∧v2∧· · ·∧vn−1)·vi = ∗v1∧v2∧· · ·∧vn−1∧vi for i = 1, 2, . . . , (n−1)

by Theorem 5. But ∗v1 ∧ v2 ∧ · · · ∧ vn−1 ∧ vi = 0. And for (ii), simply note that

‖∗v1∧v2∧· · ·∧vn−1‖ = ‖∗v1∧v2∧· · ·∧vn−1‖, by Theorem 2. But ‖v1∧v2 · · ·∧vn−1‖ =

voln−1P(v1, v2, . . . , vn−1).

Theorem 7. If T : Rn, m ≤ n, is a linear map, then the change in volume of the unit

parallelepiped P(e1, e2, . . . , en) under the mapping T is ‖T (e1)∧· · ·∧T (en)‖ = det T .

Proof.

‖T (e1) ∧ · · · ∧ T (en)‖ = volnP (T(e1), T(e2), . . . , T(en))

= det T volnP(e1, e2, . . . , en)

assuming that the student is aware of matricial representations of linear transforma-

tions by matrices whose columns are the coordinates of the image of the standing

basis vectors e2, . . . en.

Remarks. In R3,

1. v × w = ∗v ∧ w

2. u · (v × w) = u · ∗v ∧ w) = u ∧ v ∧ w

=(u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3) ∧ (w1e1 + w2e2 + w3e3)

= det

u1 u2 u3

v1 v2 v3

w1 w2 w3

 .


