MINERALS PHYSICAL PROPERTIES OF MINERALS

The Study of rocks allows geologist to understand the history of the Earth. Most Rocks are aggregates of minerals. One must therefore, be able to identify minerals, which are components of common rocks.

MINERAL. <u>Naturally</u> occurring <u>inorganic crystalline solid</u> with definite (although not fixed) <u>chemical</u> <u>composition</u>.

MINERAL CHEMISTRY.

Earth scientists have identified over 2000 minerals. Minerals are classified based on their chemical composition in groups			
Group	Examples	Comments	
Native	Gold [Au], silver [Ag], copper [Cu], sulfur [S],		
Elements	diamond[C], and graphite[C]		
Sulfides	Cinnabar [HgS], pyrite [FeS ₂], galena [PbS]		
Oxides	Corundum [Al ₂ O ₃], cuprite [Cu ₂ O], hematite [Fe ₂ O ₃]		
Halides	Halite [NaCl], sylvite [KCl]).		
Carbonates	Calcite [CaCO ₃], dolomite [CaMg(CO ₃) ₂], malachite	Most geologists considered nitrates and borates	
	$[Cu_2CO_3 (OH)_2)]$	as subcategories of the carbonates.	
Sulfates	Anhydrite [CaSO ₄] gypsum [CaSO ₄ . 2H ₂ O]	Less common sulfates exist containing	
		substitutions for the sulfate compound for	
		example, in chromates .	
Phosphates	Apatite $[Ca_5(PO_4)_3(F,Cl,OH)]$	Phosphates are often classified together with	
		arsenates, vanadates, tungstates, and	
		molybdates.	
Silicates	albite [NaAlSi ₃ O ₈], augite	Largest group of minerals	
	$[Ca,Na)(Mg,Fe,Al)(Si,Al)_2O_6], beryl [Be_3Al_2 (Si_6O_{18}],$		
	biotite [K(Mg,Fe) ₃ (AlSi ₃ O ₁₀ (OH) ₂], hornblende		
	$[(Ca,Na)_{2-3}(Mg,Fe,Al)Si_6(Si,Al)_2O_{22}(OH)_2], microcline$		
	[KAlSi ₃ O ₈], muscovite [KAl ₂ (AlSi ₃ O ₁₀ (OH) ₂], olivine		
	$[Mg, Fe)_2SiO_4]$, orthoclase $[KAlSi_3O_8]$, and quartz		
	[SiO ₂]		

The IDENTIFICATION OF MINERALS can be based upon their physical properties. Physical properties diagnostic of minerals include:

✓ CRYSTAL FORM OR STRUCTURE
✓FRACTURE AND CLEAVAGE
✓TENACITY
✓ SPECIFIC GRAVITY
✓ HARDNESS
✓ PROPERTIES RELATED TO LIGHT
© COLOR
© LUSTER
🕲 STREAK
OIAPHANEITY
✓ SPECIAL PROPERTIES
MAGNETISM
✓ ACID OR CHEMICAL REACTION
✓ TASTE
✓ ODOR
✓ FEEL
✓ FLUORESCENCE

CRYSTAL FORM OR STRUCTURE Reflection of the internal atomic structure of the minerals. Crystal faces are planar surfaces that develop if a crystal grows in an unimpeded manner in an uncrowned environment (Minerals rarely show perfect development of crystal faces. (You can't tell crystalline from an aggregate)

FRACTURE AND CLEAVAGE		
Description of the way in which a mineral breaks		
Irregular breaks are called FRACTURES	Breaks along planes are called CLEAVAGE	
	PLANES.	
FRACTURE	CLEAVAGE DIRECTION	
IRREGULAR	1 (micas: biotite, muscovite)	
FIBROUS	2 @ 90 (plagioclase, orthoclase)	
CONCHOIDAL (quartz; glass) 2 not @ 90 (hornblende)		
SPLINTERY (asbestos	3 (a) 90 (halite)	
	3 not @ 90 (calcite)	
	4 not @ 90 (fluorite)	
	6 not @ 90 (sphalerite)	

CLEAVAGE IN ONE DIRECTION

CLEAVAGE IN TWO DIRECTIONS @ RIGHT ANGLES

CLEAVAGE IN TWO DIRECTIONS NOT @ RIGHT ANGLES

CLEAVAGE IN THREE DIRECTIONS @ 90 DEGREES

CLEAVAGE IN THREE DIRECTIONS @ 60 DEGREES (NOT @ 90 DEGREES)

CLEAVAGE IN FOUR DIRECTIONS

CLEAVAGE IN SIX DIRECTIONS

TENACITY		
Index of a mineral's resistance to be broken or bent		
BRITTLE	(Shatters; quartz),	
ELASTIC	(Bends, returns to its original shape; biotite),	
FLEXIBLE	(Bends, does not return to original shape; gypsum),	
SECTILE	(Resistant to be cut by a knife; talc),	
MALLEABLE	(Resistant to breakage; pounded into different shapes; gold, copper).	

SPECIFIC GRAVITY		
Measure of the relative weight of a substance. Ratio of between the mass of a minerals and the		
mass of an equal volume of water. (HEFT)		
	•	
Useful only if the mineral is "heavy"		
Galena (PbS)	7.5	
common Silicates	2.7-2.9	

HARDNESS			
Ability of a mineral to resist abrasion. Resistance of a mineral to be scratch.			
Relative property			
	Μ	IOHS SCALE (1812):	
1	TALC		The
2	GYPSUM	Fingernail 2.5	Green
3	CALCITE	Copper Penny 3	Clawed
4	FLUORITE		Ferocious
5	APATITE	Pocket Knife Blade 5	Aardvark
6	ORTHOCLASE	Glass 5.5	Ordered
7	QUARTZ		Quick
8	TOPAZ		Tasty
9	CORUNDUM		Chinese
10	DIAMOND		Dinners
Two minerals with the same hardness will scratch each other			
Greater or less than Glass Plate (LAB KIT)			

PROPERTIES RELATED TO LIGHT

COLOR		
Usually the first an most easily observed property of		
a min	eral.	
Not diagnostic for most minerals		
Quartz, Fluorite	Purple, black, white,	
	green yellow, pink,	
	almost any color).	
For a few is diagnostic		
Azurite	Blue	
Malachite	Green	
Galena	Gray	
Olivine	Green	
Sulfur Yellow		

LUSTER		
Way in which the surface of minerals reflect light (in a fresh surface).		
METALLIC Galena, pyrite		
NON METALLIC		
VITREOUS OR GLASSY	Quartz	
PEARLY	Talc	
SILKY	Gypsum	
RESINOUS	Sphalerite, sulfur	
EARTHY OR DULL	Kaolinite, limonite	
GREASY OR OILY, ADAMANTINE, WAXY, etc		

STREAK		
Color of a powdered mineral. Tested by rubbing it against a piece of porcelain (Streak plate).		
Most useful for METALLIC MINERALS .	Hematite (gray or red color; red-brown streak)	
Most NON METALLIC MINERALS	Have a white streak	

DIAPHANEITY		
Way in which a mineral transmits light.		
TRANSPARENT Transmit light; images can be seen		
TRANSLUCENT Transmit light not images		
OPAQUE Does not transmit light or images		

SPECIAL PROPERTIES

		1	
MAGNETISM	Strongly magnetic	Magnetite	
ACID OR	(CaCO ₃) reacts with dilute HCl	Calcite Dolomite	
CHEMICAL	(hydrochloric acid). [(CaMg) CO ₃]		
REACTION	$CaCO_3 + HCl == CaCl + H2O + CO2$		
TASTE	NaCl; common salt	Halite	
	KC1	Sylvite	
ODOR	"nasty odor" (stink)	Sulfur	
		Sphalerite (when	
		scratched)	
FEEL	Sensation gained by rubbing a specimen	Talc soapy	
		Halite greasy (in	
		humid climates)	
FLUORESCENCE	Some minerals when they are exposed	Willemite (Zn_2SiO_4)	
	to UV light emit a characteristic colored		
	light		