EENS 1110 |
Physical Geology |
Tulane University |
Prof. Stephen A. Nelson |
Metamorphism and Metamorphic Rocks |
|
Definition of Metamorphism The word "Metamorphism" comes from the Greek: meta = after, morph = form, so metamorphism means the after form. In geology this refers to the changes in mineral assemblage and texture that result from subjecting a rock to pressures and temperatures different from those under which the rock originally formed. The original rock that has undergone metamorphism is called the protolith. Protolith can be any type of rock and sometimes the changes in texture and mineralogy are so dramatic that is difficult to distinguish what the protolith was.
During metamorphism the protolith undergoes changes in texture of the rock and the mineral make up of the rock. These changes take place mostly in the solid state and are caused by changes in physical or chemical conditions, which in turn can be caused by such things as burial, tectonic stress, heating by magma or interactions with fluids.
|
Factors that Control Metamorphism Metamorphism occurs because rocks undergo changes in temperature and pressure and may be subjected to differential stress and hydrothermal fluids. Metamorphism occurs because some minerals are stable only under certain conditions of pressure and temperature. When pressure and temperature change, chemical reactions occur to cause the minerals in the rock to change to an assemblage that is stable at the new pressure and temperature conditions. But, the process is complicated by such things as how the pressure is applied, the time over which the rock is subjected to the higher pressure and temperature, and whether or not there is a fluid phase present during metamorphism.
|
|
There are two kinds of differential stress. Normal stress causes objects to be compressed in the direction of maximum principal stress and extended in the direction of minimal stress. If differential stress is present during metamorphism, it can have a profound effect on the texture of the rock. Shear stress causes objects to be smeared out in the direction of applied stress.
|
|
|
|
|
Grade of Metamorphism |
|
Metamorphic grade is a general term for describing the relative temperature and pressure conditions under which metamorphic rocks form. As the temperature and/or pressure increases on a body of rock we say that the rock undergoes prograde metamorphism or that the grade of metamorphism increases. |
|
Retrograde Metamorphism As temperature and pressure fall due to erosion of overlying rock or due to tectonic uplift, one might expect metamorphism to a follow a reverse path and eventually return the rocks to their original unmetamorphosed state. Such a process is referred to as retrograde metamorphism. If retrograde metamorphism were common, we would not commonly see metamorphic rocks at the surface of the Earth. Since we do see metamorphic rocks exposed at the Earth's surface retrograde metamorphism does not appear to be common. The reasons for this include:
|
Metamorphic Rock Types
There are two major subdivisions of metamorphic rocks.
Foliated Metamorphic Rocks |
|
Example - metamorphism of a shale, made up initially of clay minerals and quartz all of clay or silt size. |
|
|
|
|
Non-foliated Metamorphic Rocks
Non-foliated rocks lack a planar fabric . Absence of foliation possible for several reasons:
Non-foliated rocks are given specific names based on their mineralogy and composition: Amphibolite - These rocks are dark colored rocks with amphibole (usually hornblende) as their major mineral. They are usually poorly foliated and form at intermediate to high grades of metamorphism of basaltic or gabbroic protoliths. Quartzite - A rock made up almost entirely of quartz. They are formed by metamorphism of quartz arenites (sandstones). Since quartz is stable over a large range of temperatures and pressures, no new minerals are formed during metamorphism, and the only metamorphic effect that occurs is recrystallization of the quartz resulting in interlocking crystals that make up a very hard rock. Marble - A limestone or dolostone made up only of calcite or dolomite will metamorphose to a marble which is made mostly recrystallized calcite or dolomite. The Recrystallization usually obliterates all fossils. Marbles have a variety of colors and are often complexly banded. They are commonly used as a decorative stone. |
Protolith Composition Although textures and structures of the protolith are usually destroyed by metamorphism, we can still get an idea about the original rock from the minerals present in the metamorphic rock. Minerals that form, do so because the chemical elements necessary to form them are present in the protolith. General terms used to describe the chemical composition of both the protolith and the resulting metamorphic rock are: Pelitic Alumina rich rocks, usually shales or mudstones. These start out originally with clay minerals and as a result of metamorphism, Alumina rich minerals like micas, chlorite, garnet, kyanite, sillimanite and andalusite form. Because of the abundance of sheet silicates, pelitic rocks commonly form slates, phyllites, schists, and gneisses during metamorphism. Mafic - These are Mg and Fe rich rocks with low amounts of Si. Minerals like biotite, hornblende and plagioclase form during metamorphism and commonly produce amphibolites. Calcareous - These are calcium-rich rocks usually derived from limestones or dolostones, and thus contain an abundance of Calcite. Marbles are the type of metamorphic rock that results. Quartzo-Feldspathic - Rocks that contain an abundance of quartz and feldspar fall into this category. Protoliths are usually granites, rhyolites, or arkose sandstones and metamorphism results in gneisses containing an abundance of quartz, feldspar, and biotite. |
Types of Metamorphism
Metamorphism can take place in several different environments where special conditions exist in terms of pressure, temperature, stress, conditions, or chemical environments. We here describe several diff rent types of metamorphism that are recognized.
|
|
|
|
|
Hydrothermal Metamorphism - Near oceanic ridges where the oceanic crust is broken up by extensional faults, sea water can descend along the cracks. Since oceanic ridges are areas where new oceanic crust is created by intrusion and eruption of basaltic magmas, these water-rich fluids are heated by the hot crust or magma and become hydrothermal fluids. The hydrothermal fluids alter the basaltic oceanic crust by producing hydrous minerals like chlorite and talc. Because chlorite is a green colored mineral the rocks hydrothermal metamorphic rocks are also green and often called greenstones. Subduction Related Metamorphism - At a subduction zone, the oceanic crust is pushed downward resulting in the basaltic crust and ocean floor sediment being subjected to relatively high pressure. But, because the oceanic crust by the time it subducts is relatively cool, the temperatures in the crust are relatively low. Under the conditions of low temperature and high pressure, metamorphism produces an unusual blue mineral, glaucophane. Compressional stresses acting in the subduction zone create the differential stress necessary to form schists and thus the resulting metamorphic rocks are called blueschist Shock Metamorphism - When a large meteorite collides with the Earth, the kinetic energy is converted to heat and a high pressure shock wave that propagates into the rock at the impact site. The heat may be enough to raise the temperature to the melting temperature of the earth rock. The shock wave produces high enough pressure to cause quartz to change its crystal structure to more a dense polymorph like coesite or stishovite. Ancient meteorite impact sites have been discovered on the basis of finding this evidence of shock metamorphism. |
Metamorphic Facies In general, metamorphic rocks do not undergo significant changes in chemical composition during metamorphism. The changes in mineral assemblages are due to changes in the temperature and pressure conditions of metamorphism. Thus, the mineral assemblages that are observed must be an indication of the temperature and pressure environment that the rock was subjected to. This pressure and temperature environment is referred to as Metamorphic Facies. |
The sequence of metamorphic facies observed in any metamorphic terrain, depends on the geothermal gradient that was present during metamorphism. A high geothermal gradient such as the one labeled "A" in the figure shown here, might be present around an igneous intrusion, and would result in metamorphic rocks belonging to the hornfels facies. Under a normal geothermal gradient, such as "B" in the figure, rocks would progress from zeolite facies to greenschist, amphibolite, and eclogite facies as the grade of metamorphism (or depth of burial) increased. |
If a low geothermal gradient was present, such the one labeled "C" in the diagram, then rocks would progress from zeolite facies to blueschist facies to eclogite facies. Thus, if we know the facies of metamorphic rocks in the region, we can determine what the geothermal gradient must have been like at the time the metamorphism occurred. |
The Rock Cycle Before moving on to the rest of the course, you should read Interlude C in your textbook (pages 261-268). Now that we have discussed the three types of rocks, it is important to understand how the atoms that make up these rocks cycle through the earth. This cycling involves process that will be discussed in detail throughout the remainder of this course. Since the rock cycle links the rock forming processes to tectonic process and to surface process (most of which will be discussed throughout the rest of the course) , it is important to understand the concept of the rock cycle and the various linkages involved. |
|
We here start our discussion with Volcanoes and Volcanic eruptions and processes that are involved in the production of igneous rocks at the earth's surface. |
Questions on this material that might be asked on an exam
|