Bridge Structure Rehabilitation

Field Application of Rapid Installation Method

Anthony J. Lamanna Assistant Professor

September 26, 2003

Department of Civil and Environmental Engineering Tulane University lamanna@tulane.edu

Civil and Environmental Engineering

Outline

Current Method Rapid Method **Bridge Selection Bridge Details Design** Details **Field Installation Installation Observations** Service Load Test Cost Conclusions

Current Method of Bonding FRP

Negatives:

- •Surface preparation
- •Cure time
- •Skilled labor

Rapid Method of Attaching FRP

Rapid application Simplified application Minimal surface preparation Application in adverse environments Simplified design criteria Ductile behavior of strengthened beam

Bridge Selection

- •Flat slab bridge
- •Constructed in 1930
- •Designed for H15 truck loading
- •HS 17.6 inventory rating
- •HS 29.3 operating rating
- •32.7 sufficiency rating
- •Efflorescence on edge of slab
- •Scheduled for replacement 2003

Bridge Details

Design Details

H15 to HS20 = 33% Increase

H15 to HS25 = 67% Increase

Design Details

Field Installation

Strip supplied in 100 ft rollsCut to 21 ft 2 in. lengthsFastener locations marked & pre-drilledWork platform constructed under bridgeSoft calcium removed with putty knife

Field Installation

Strip duct taped in position
Midspan fastener installed
Midspan to abutment, repeated
15 minutes to position strip
15 minutes to attach strip

Field Installation

End Anchor Bolts

12" strip spacing

Strengthened bridge

Installation Observations

Due to deterioration or poor consolidation

Over driven fastener

Out of plane variations

Installation Observations

Strips relocated a few inches to avoid major damage

Service Load Test

•25.4 Tons

•Strains very small

(Strains reduced in some cases up to 88%)

- •Strips left in place 1 year
- •Service load test repeated
- •Bridge tested to failure

Cost

Total Cost (Materials + Labor) = \$7,995.00

Unit Cost = $12.72 / ft^2$

(Existing Epoxy Bonded Systems cost well over \$25/ft²)

DOT Workers had no prior training

Conclusions

- 1. Economical
- 2. Strips successfully attached to deteriorated concrete
- 3. Design calculations show increase from HS17 to HS25
- 4. Both stainless steel & galvanized fasteners install well
- 5. Service testing inconclusive

Questions?

