Sediment in the Mississippi River: The "Supply-Side" of Coastal Restoration

Mead Allison and Jeffrey Nittrouer and John Galler Dept. of Earth & Env Sciences, Tulane University Richard Campanella

Tulane-Xavier Center for Bioenvironmental Research

Funding provided by Tulane-Xavier CBR (LEAG and MIRIR), NOAA, USGS, ONR

Engineering for Coastal Restoration in Louisiana:

- 1. Large freshwater-sediment diversions (10,000-250,000 cfs) suspended load
- 2. Long-distance pipeline conveyance -- bedload/stored suspended/relict source

Supporting Science Questions:

- 1. What non-renewable and renewable sediment resources are available for use in coastal restoration within the levees?
- 2. What do we still need to know to adequately manage the resource?
- 3. How does the sedimentological/hydrological/rheological character of the system control potential extraction methods?

NON-RENEWABLE SEDIMENT RESOURCES FOR RESTORATION

Deep Meander Reach

(1) Post-Levee Batture

-relatively high quality sand

-limited sediment volume -already mined for local projects including levee reinforcement -removal by land mining

NON-RENEWABLE SEDIMENT RESOURCES FOR RESTORATION

Deep Meander Reach

(2) Pre-Levee Point Bars

-high quality sand

-few in number in lower river
-removal will affect downriver hydrodynamics
-difficult to transport to site (removal method, consolidation)?

NON-RENEWABLE SEDIMENT RESOURCES FOR RESTORATION

(3) Relict Incised Strata

-variable, layer-specific composition (sand, mud, peat)
-fluvio-deltaic origin
-range in age from Plaquemine-Balize lobe to Pleistocene
-increase in age with depth in channel and upriver (strata dip seaward)

-highly consolidated-difficult to remove and transport-suitable for marsh restoration substrate?

Supporting Science Questions:

1. What non-renewable and renewable sediment resources are available for use in coastal restoration within the levees?

<u>Suspended</u> Sediment Loads of the Lower Mississippi-Atchafalaya

400 mt (Pre-1850; Kesel et al., 1988) **394 mt** (Pre-1963; Keown et al., 1986)

Dams, Soil Conservation, Elimination of Bank Caving, etc.

230 *mt* (Pre-1993 + Red; Horowitz et al., 2001) **190** *mt* (Post-1993 + Red; Horowitz et al., 2001)---**124** *mt* in Miss

LOWER MISSISSIPPI RIVER SEDIMENT CYCLE

HIGH DISCHARGE

LOCAL VS UPSTREAM SEDIMENT SOURCES?

ESTUARINE REACH

Estuarine

Mississippi River Discharge at Tarbert Landing, MS 2003-2005

Additional Audubon surveys in August 2005, February 2006

Evaluation of Bedload (bedform) Sand Flux Using Multibeam Resurvey Method (2 or more surveys over 8-24 hrs)

January 2005 (34,290 m³/s)

Bedform Transport (kg/m)<300 300 - 600 600 - 900 900 - 1200 1200 - 1500 1500 - 1800 1800 - 2100

February 2004 (14,200 m³/s)

Audubon Park (2 of 8 dates)

1 km

BEDLOAD TRANSPORT VS RIVER DISCHARGE

How Much Sand is Transported in Suspension?

% Sand (<62 microns) in Suspension (from USGS Water Quality Data)

*From Horowitz et al. (2001; pers. Comm)

- 1. Bed aggradation between RM266 and RM76 (see Galler et al., 2003)
- 2. Limited # of measurements and no near-bed sampling
- 3. Reach-scale variability in bedload-suspended load cycling

J	an05 (34,290	m³/s)
3314600-		METERS
3314400-		- 33
		- 31
3314200-		- 29
		- 27
3314000-		- 25
		- 23
3313800-		- 21
3313600-		-
770	100 776200	
//6	100 776300 METERS	

AUDUBON SAND LOSS

Elevation Differencing (Nov-Jan) Loss to suspension of *327,600 tons* Equivalent to a layer 0.32 m thick

J	an05 (34,290	m³/s))	
3314600-		[–] ME	TER	
3314400-		_	-3	33
			-3	3
3314200-		_	- 2	20
			- 2	27
3314000-		_	-2	25
			- 2	23
3313800-		_		2
3313600-		_		
776	100 776300			
	METERS			

AUDUBON SAND LOSS

Elevation Differencing (Nov-Jan)
Loss to suspension of *327,600 tons*Equivalent to a layer 0.32 m thick

Transition Area to Suspension

LOWER MISSISSIPPI RIVER SEDIMENT CYCLE

HIGH DISCHARGE

Difference from:

1) Increased size of dunes
 2) Loss to suspension

Low Discharge Sand Storage (Nov 2003 Bed Survey)

So: Hydraulic Energy Decreases Downstream Even in the Lower River

2. What do we still need to know to adequately manage the resource?

- A. River observatories to provide comprehensive sediment monitoring (bed and susp)
- B. Establish a 10-20 river mile long experimental transect to facilitate 3-D numerical model development (CWPPRA Scofield Island?)

Tulane/LUMCON AUDUBON RIVER OBSERVATORY

http://weather.lumcon.edu

SINCE 2003 -water quality (nitrate,temperature chlorophyll, turbidity) -bedload transport (multibeam) -particle-reactive radiotracers (pumped)

BEGINNING 2006

-suspended concentration -suspended grain size -bed grain size -x-sectional discharge (ADCP) -floc size (LISST)

FUTURE

-discharge (H-ADCP) -sand sheet thickness (CHIRP) -CDOM (backscat)

P-63 ISOKINETIC & ADCP X-sections