HYBRID MOBILE LAUNCH SYSTEM

FALCO

LOCKHEED MARTIN

We never forget who we're working for **

Hybrid Motor Ignition and Operation

- 1) Fuel grain (HTPB) is ignited electrically using a small flow of gaseous oxidizer
 - Non-pyrophoric
 - Non-pyrotechnic

- 2) The main oxidizer valve opens and the oxidizer is injected into motor
- 3) Fuel vaporized from solid HTPB mixes with oxidizer to sustain combustion

From Oxidizer Tank

- 4) Thrust can be tailored by adjusting oxidizer flow rate
- 5) Termination of oxidizer flow rate will shut off motor
- 6) The fuel grain can be re-ignited if necessary

Non-Explosive Propulsion Technology

Hybrid Propulsion Attributes

Benefits of Hybrid Propulsion

- Safety (inert fuel, liquid oxidizer)
- Low cost (commercial components/rapid demonstration)
- High Isp (equivalent to liquids)
- Ability to throttle
- Minimum debris thrust termination
- Environmentally benign (fuel is landfillable, exhaust constituents: CO, CO₂, H₂O)
- Ability to stop and start (regulate oxidizer flow)
- Safe operations/handling
- Non-explosive

Michoud Operations Hybrid Propulsion Background

Michoud Operations has been actively involved with Hybrid Propulsion Technology since 1989

SLV Responsiveness Features

 System design driven by responsive operations requirements instead of typical performance driven requirements

Driving Responsiveness Features

- Surge and all weather capability (cat 2)
- Robust vehicle with performance margin
- ▲ Horizontal stage integration
- Vehicle self test and checkout
- Stage integration & launch in <24 hours</p>
- Preloaded inert fuel
- Fault-tolerant avionics
- Simple field operations:
- Factory mated T- 0 disconnects
- "OneClick" Vehicle/Payload field joint
- Only 2 fluids loaded at the launch area
- A No pyrotechnics/no hydraulics

Responsiveness

Hybrid Propulsion & Basing Flexibility are Key Elements For Responsive Space

Video of LM Falcon/SLV Concept

Falcon SLV Performance

- SLV-DS meets all mission performance requirements
- Single vehicle design accomplishes two different mission profiles
 - Small satellite delivery to orbit (100 nm x 100 nm from KSC):
 - 1,000 lb minimum
 - 1,855 lb maximum
 - Hypersonic test vehicle profile
 - 2,000 lb minimum
 - 3,055 lb maximum

SLV-DS Achieves All Performance Requirements with a Single Vehicle

Approved for Public Release, Distribution Unlimited

LOCKHEED MARTIN

RR101 Motor Firing – January 2005

- First Test 4 Months after ATP
- 60 Second Burn Time
- 500 psi

OBJECTIVES:

- Acquire the critical data necessary to validate the analytical baseline for LMF900 multi-row, multi-port hybrid technology
 - Combustion stability
 - Regression rate
 - Thrust
 - Chamber pressures
 - Port to port pressures
 - Low frequency vibration
 - High frequency G levels
 - Demonstrate increased performance of LMF900
 - Baseline residuals

Successful Firing Increased Technology Readiness Level and Grounded Falcon SLV Sizing Parameters

Multi-row Multi-port Fuel Grain Performed As Predicted

- RR101 Acquired critical data to validate the analytical baseline for multi-row, multi-port hybrid technology
 - Stable Combustion
 - Favorable Regression
 - Thrust within Predictions
 - Isp within Predictions

RR101 Results Incorporated Into Vehicle Design & Next Test Article

RR102 Motor Firing – May 2005

- Second Test Planned 4 Months after RR101
- 120 Second Burn Time
- 900 psi

OBJECTIVES:

- Acquire the critical data necessary to refine the analytical baseline for LMF900 multi-row, multi-port hybrid technology
 - Combustion stability
 - Regression rate consistency
 - Thrust
 - Chamber pressures
 - Port to port pressures
 - Low frequency vibration
 - High frequency G levels
 - Residuals Consistency
 - Fuel Integrity
 - 75% Flight Duration

RR102 Completes Falcon Phase IIa Testing

Falcon SLV Summary

- SLV system design driven by responsive operations requirements
- FALCON SLV is a significant spiral in the development of operationally responsive space
 - Designed for operational speed and flexibility
 - Costs approaching \$5M including operations & range costs
- PDR in June 2005

Innovative Hybrid SLV On-Track For Flight Demonstration

