

Transitioning Developmental Technologies to Engineered Systems for Military Applications

Tulane University Engineering Forum June 2, 2006

Safe Haven From Hurricane Katrina

Scientists, Engineers and Entrepreneurs

- Scientists build to learn.
- Engineers learn to build.
- Entrepreneurs build a business.

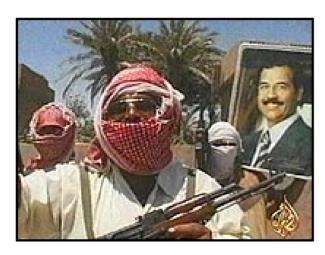
How does this apply to the topic of this conference?

New challenges relating to coastal protection from both environmental and security perspective

- Can scientists come up with new approaches to old problems?
- Can engineers come up with workable solutions?
- Why will businesses support this effort?
- Ionatron is a unique blend of science, engineering and business

Introduction

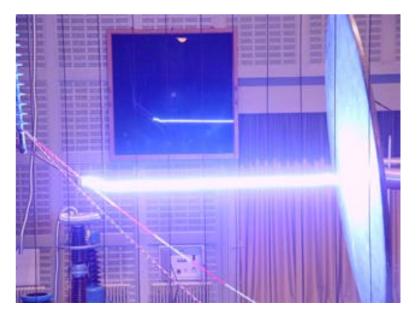
- Ionatron is a high-tech, start-up company working on new technologies for Defense applications:
 - We have built an environment that allows rapid:
 - Proof of Principal Demonstrations,
 - Prototype Development and Effectiveness Demonstration,
 - Path to Production
- The challenge has been to take new technology from the laboratory to useful, real world applications quickly.
 - How do you transition "technology push" into a "user pull"?
 - What are the most important considerations of the customer?
 - What are the true limiting factors for success?
- What is the role of the engineer in this process?



Real-World Need, Real-World Technology

- What is the need?
 - Global War on Terror has replaced the Cold War
 - The battlefield is in cities, not open terrain
 - Engagement range is close-in
 - Enemy is among the civilian population
 - Security organizations are forced into non-conventional situations
 - Requires new less-than-lethal / lethal, innovative weapon systems to handle multiple types of threats and scenarios

The New "Threat"


Electrical Discharge through the Atmosphere

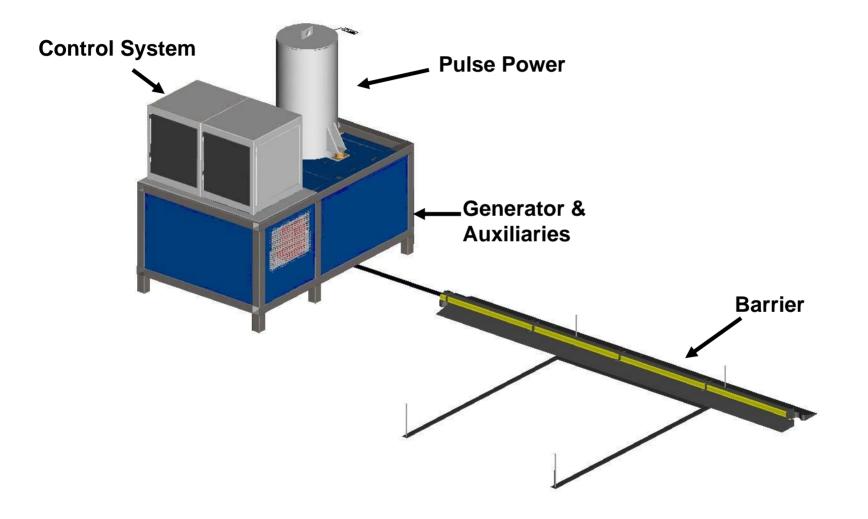
- **ÍONATRON***
- Scientists have studied the phenomenon of atmospheric electrical discharges for many years.
- Others have conducted initial demonstrations of guiding or initiating electrical discharges using lasers

Unguided electrical discharge at a Russian High Voltage Test Facility. 5MV can travel a half a kilometer on its own.

Guiding using an ultra-short pulse laser demonstrated in Germany

Opportunities Arise from Working Solutions

- Solutions to solving the long term problem can provide short term opportunities
 - Pressing needs from the customer for innovative solutions to new problems
 - Look at the requirements and review your "tool chest"
 - Ask the question: "Do we have something that can be used now?"
 - Is the potential solution a distraction, or does it complement your primary effort?
- A quick experiment, prototype or demonstration can help answer the question(s)
 - Vehicle Stopping
 - Roadside Bombs



Vehicle Stopping

- Use existing High Voltage Pulse Power supplies to address need:
 - Must be operated at a distance
 - Must be safe to occupants of vehicle
 - Allow Security Personnel to activate when needed
 - Disrupt (Stall) or Deny/Destroy (Stop) Option preferred
 - Must be portable, easy to set up, easy to operate, relatively inexpensive



Vehicle Interrupt System (VIS)

VIS During Assembly

Road Side Bombs

- Use existing HV pulse power supplies
 - Operated remotely
 - "Sweep" an area
 - Relatively inexpensive
- Solution: Counter IED System (CIEDS)
 - 4WD Utility Vehicle
 - Configured to operated remotely from a command vehicle
 - 3 months from lab to first demo
 - 16 weeks from contract award to field test

Original CIEDS Prototypes

Version I

Version II

Platform Technical Roadmap

Present

How to Transition from Lab to Real-World?

- Integrate the System
 - Auxiliaries and controls
 - High Voltage Power Supply control
- Operator interface
 - Instrumentation and controls to monitor system performance and parameters
 - Allows operator to generate desired system output and verify it is achieved
- All must meet a set of user requirements
 - Generates a predictable and reliable system output
 - Works in the field environment
 - Delivers the capability the customer needs

What are the Compelling Customer Needs?

- Capability*
- Reliability*
- Safety*
- Cost*
- Compatibility*
- Acceptability

*Engineering plays a significant role

What are the True Limiting Factors for Success?

- Customer's needs are not met
 - Capabilities oversold
 - Product under-delivers
 - Requirements change
- Cost over-runs
- Competition wins
- Resistance to Change
 - Organizational
 - Cultural
 - Social

Lessons For Today

- Innovation and product delivery continue to change the world
 - New capabilities offer new solutions
- "Technology push" can transition to "Customer pull", but it's not easy
 - Change is hard
- Engineering is a key enabler
 - Necessary, but not sufficient for success
- Never stop trying to improve