Numerical Model Study of the Barataria Basin

Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) Project, Delta Building Diversion at Myrtle Grove (BA-33)

Project Overview

Project area has undergone substantial loss of wetlands and a significant habitat shift to more saline marshes in the last 50 years due to subsidence, altered hydrology due to navigation and flood control projects, as well as oil and gas activities.

Without remediation, it is anticipated that approximately 14,500 acres of wetlands will be lost in the project area over the next 20 years.

Wetland types will continue to shift towards more saline habitats.

Mean Sea Level Trend 8761724 Grand Isle, Louisiana

The mean sea level trend is 9.85 millimeters/year (3.23 feet/century) with a standard error of 0.35 mm/yr based on monthly mean sea level data from 1947 to 1999.

Project Overview

Project Features:

Gated box culverts on the west bank of the Mississippi River to divert freshwater and sediment Dedicated dredging to create marsh in the vicinity of Bayou Dupont, the Barataria Bay Waterway, and the Wilkinson Canal

Combination of these features

Myrtle Grove Alternatives

- 1. 2,500 cfs diversion
- 2. 5,000 cfs diversion
- 3. 5,000 cfs diversion, w/ sediment retention outfall management
- 4. 15,000 cfs diversion
- 5. 15,000 cfs diversion, w/ sediment retention outfall management
- 6. 15,000 cfs diversion, w/ sediment enrichment
- 7. 5,000 cfs diversion 4/5 years, 15,000 cfs diversion 1/5 years
- 8. 5,000 cfs diversion 4/5 years, 15,000 cfs diversion 1/5 years, w/ sediment retention outfall management
- 9. 5,000 cfs diversion 4/5 years, 15,000 cfs diversion w/ sediment enrichment 1/5 years
- **10.** Scales of dedicated dredging from the Mississippi River (additional locations to be determined)
- **11. Dedicated dredge material placement near Texaco and Magnolia Canals**
- 12. Dedicated dredging from Bayou Dupont

Myrtle Grove Diversion Channel Alignment

Myrtle Grove Dredge Material Placement Areas

Supplemental Myrtle Grove Dredge Material Placement Areas

Purpose of Model Study

Analyze the potential impact to the region of the proposed Mississippi River diversion located near Myrtle Grove, LA.

Specifically examine the seasonal impact on the salinity regime of the Barataria Basin given a diversion rate of 2,500 to 15,000 cfs.

Modeling Approach

- Use TABS RMA-2 and RMA-4
- Year long simulation
- Average River year with corresponding boundary conditions
- 2003 Hydrologic conditions chosen for boundary conditions

Latest Generation TABS mesh

19,448 Elements 53,383 Nodes Combination of 1-d and 2-d features

Running RMA2 on ERDC HPC supercomputer "Ruby" using 16 processors simultaneously

About 7 hour run time for a month long simulation with a 1-hour time step

SGI Origin 3000 "Ruby"

Performance Features

CPUS - 1,024 700-Mhz processors

Computational Processors - 1008

Computational Capacity – 1.434 TFLOPS

Aggregate Memory Size – 1.024 TB

Total Disk Storage – 20 TB, Fibre Channel Raid5

Network Interface – Gigabit Ethernet

Hydrodynamic Model Boundaries

- Nine dynamic flow boundaries
 - Gulf Intracoastal Waterway
 - Bayou Lafourche (200 cfs pump diversion)
 - Davis Pond (Controlled Flow)
 - Naomi Siphon (Controlled Flow)
 - West Pointe A La Hache Siphon (Controlled Flow)
 - Grand Pass
 - West Bay Diversion
 - Southwest Pass
 - Proposed Diversion at Myrtle Grove
- One dynamic stage boundary
 - Gulf of Mexico (-500 foot contour)

Nine Dynamic Flow Boundaries

GIWW Flow Boundary

GIWW Flow Regression Analysis

GIWW Flow Boundary

GIWW Flow Regression Analysis

Grand Pass Flow Boundary

	Tarbert Discharge	Grand Pass Discharge	
	(cfs)	(cfs)	% Tarbert
19-Jul-03	367438	32938	9.0%
19-Mar-03	880000	74805	8.5%
24-Jan-03	429000	47841	11.2%
2-Nov-02	337245	55480	16.5%
25-May-02	885082	77565	8.8%
1-Sep-01	204084	-7043	-3.5%
9-Mar-01	1111511	84700	7.6%
25-Aug-00	265000	31998	12.1%
4-Mar-99	775000	69196	8.9%
22-Sep-98	214000	28574	13.4%
3-Jun-98	693000	70000	10.1%
22-Mar-97	1414000	98220	6.9%
22-Feb-97	868000	74293	8.6%
20-Jul-96	403000	36334	9.0%
31-Jul-91	285000	25400	8.9%
11-Mar-90	1066000	59247	5.6%
28-Mar-89	997000	69800	7.0%
14-Mar-89	1134000	74900	6.6%
4-6 jun 84	1165667	76848	6.6%
20-May-83	1246000	61270	4.9%
9-11 jun 81	697000	44083	6.3%
16-18 oct 79	366000	27362	7.5%
		Average	8.2%

Southwest Pass Flow Boundary

	Tarbert Discharge	Southwest Pass Discharge	
	(cfs)	(cfs)	% Tarbert
19-Jul-03	367438	112714	30.7%
19-Mar-03	880000	241890	27.5%
24-Jan-03	429000	169138	39.4%
2-Nov-02	337245	161314	47.8%
25-May-02	885082	278202	31.4%
1-Sep-01	204084	-20250	-9.9%
9-Mar-01	1111511	371400	33.4%
25-Aug-00	265000	123692	46.7%
4-Mar-99	775000	257343	33.2%
22-Sep-98	214000	53172	24.8%
3-Jun-98	693000	234000	33.8%
22-Mar-97	1414000	387216	27.4%
22-Feb-97	868000	380035	43.8%
20-Jul-96	403000	266060	66.0%
21-Jun-96	984000	339900	34.5%
11-Mar-90	1066000	284000	26.6%
28-Mar-89	997000	195600	19.6%
4-6 jun 84	1165667	373000	32.0%
20-May-83	1246000	428000	34.3%
9-11 jun 81	697000	255735	36.7%
16-18 oct 79	366000	116812	31.9%
		Average	32.9%

Tidal Stage Boundary

Using NOAA Tidal Gage at Grand Isle, LA.

Data is amplified by a factor of 1.2 and vertically shifted by a factor of -0.25. No temporal shift is applied. ((Gage reading) x 1.2) – 0.25

Grand Isle Model Verification

June 2002 Grand Isle Stage

Grand Isle Computed Discharge

Grand Isle Model Verification

September and October 2002 Grand Isle Stage

Bayou Barataria at Lafitte Model Verification

What's Next?

- Finalize calibration of Hydrodynamic model (RMA-2)
- Calibrate and verify for salinity levels using RMA-4
- Alternative analysis
- Refine Mississippi River contribution perhaps with additional model studies
- Look at other climatological factors such as precipitation, wind patterns, sea level rise, etc...

Davis Pond Freshwater Diversion

Goals of Study

- Evaluate the performance of 9,390 acre ponding area to evacuate 10,650 cfs capacity diversion
- Test alternatives to achieve flow profiles that remain within the guide levees (3.6 to 6.6 ft NAVD88)

Test Diversion

Floating Marsh within Ponding Area

Legend

Barataria and Terrebonne Basins Attached Marshes Thick Mat Marshes of Undetermined Buoyancy Thick Mat, Herbaceous Floating Marshes Thick Mat, Woody Floating Marshes Thin Mat, Herbaceous Floating Marsh Study Area

RMA2 Marsh Porosity

- Technique for handling complex topography/bathymetry as a sub-scale statistical variation
- Used to estimate the effects of floating marsh

Example Wetland to be Handled with Marsh Porosity

Effective Depth

Marsh Porosity with Floating Marsh

Marsh Porosity with Floating Marsh

Adjustmesnts for Floating Marsh

Conventional marsh porosity

$$h_{\sigma} = \int_{0}^{h} K \, dz = \int_{0}^{z_{bot}} AC3 \, dz + \int_{z_{bot}}^{z_{top}} \left[AC3 + \frac{(1 - AC3)(z - z_{bot})}{AC2} \right] dz + \int_{z_{top}}^{h} dz$$
$$= h - \frac{(1 - AC3)(z_{top} + z_{bot})}{2}$$

Effects of floating marsh (d=submerged marsh depth, $P_m =$ porosity of marsh

$$h_{\sigma} = \int_{0}^{h} K dz = \int_{0}^{h-d} AC3 \ dz + \int_{h-d}^{z_{bot}} AC3 \ P_{m} \ dz + \\ + \int_{z_{bot}}^{z_{top}} P_{m} \left\{ AC3 + \frac{(1-AC3)}{AC2} (z-z_{bot}) \right\} dz + \int_{z_{top}}^{h} P_{m} dz \\ = AC3 \Big[(1-P_{m})(h-d) + P_{m} z_{top} \Big] + P_{m} \left\{ \frac{(1-AC3)AC2}{2} + h - z_{top} \right\}$$

Friction Formulation

• Depth dependence in two modes

$$n = \frac{n_0}{d^{\alpha}} + n_v e^{-d/d_0}$$

Davis Pond Freshwater Diversion Model Domain and Bathymetry

Davis Pond Diversion

Current Velocity Magnitude

Filed Observation Stations

Observed Water Level Data

Model Verification at Gage 20

Model Verification at Gage 23

Verification of Peak Profile

Existing Topography at Weir

Evaluation of Alternatives

Conclusions

- To pass the design flow may require significant excavation along the weir
- Floating vegetative marsh can be addressed dynamically and implicitly with marsh porosity and a frictional formulation as a function of flow depth
- Complex geometric/hydrodynamic problems need spatial flexibility in velocity distributions to properly distribute energy losses