

MITIGATION OF EMBANKMENT SETTLEMENT AT BRIDGES USING PILE-SUPPORTED APPROACH SLABS

Mario Rodriguez

Deputy Director of Planning and Development, Louis Armstrong New Orleans International Airport

Patrick J. Wilson, P.E.
Vice President
Volkert & Associates, Inc.

LOUIS ARMSTRONG NEW ORLEANS INTERNATIONAL AIRPORT

NASA, Earth Observatory,Natural Hazards

August 29, 2005 Changes the Lives of Many ... Forever!

Armstrong International Airport & Hurricane Katrina

Runway Completed In Time

PRIMARY RUNWAY COMPLETED 3 MONTHS EARLY

- The Primary Runway is completed August 26, three days before Katrina. Original deadline was Nov. 15.
- Completion was the most important factor in the successful evacuation of evacuees. A financial incentive for early completion was paid per the contract agreement.

Armstrong International Airport -Played a Vital Role

- * Storm Shelter
- * Evacuee Drop Zone
- * Air Evacuation Center
- * Relief Supply Depot
- * Triage Center
- * Hospital & Maternity Ward
- * Hospice & Morgue
- * Red Cross Site
- * Relief Barracks & Mess

- * Animal Rescue Shelter
- * Command Center
- * Military Base
- * Police Station
- * Ambulance Dispatch
- * Tent City
- * Parish Debris Dump Site
- * Commercial & General Aviation Airport
- * FEMA Trailer Park Site

RUNWAY 10-28

LANOIA - 1947

SOUTH LOUISIANA GEOLOGY

DOTD-KENNER TUNNEL

DOTD-KENNER TUNNEL

DOTD-KENNER TUNNEL

BRIDGE AT DOTD-KENNER TUNNEL

SECTION ALONG C.L. RUNWAY 10-28

BRIDGE APPROACH SLAB

PILE SUPPORTED APPROACH SLAB

TYPICAL PILE-SUPPORTED APPROACH SLAB

IDEAL LONG-TERM PROFILE

POOR LONG-TERM PROFILE

APPROACH SLAB ON US 90 (LAFOURCHE PAR.)

APPROACH SLAB ON US 90 (LAFOURCHE PAR.)

APPROACH SLAB AT LA 3139 (EARHART EX'WAY)

APPROACH SLAB ON US 90 (TERREBONNE PAR.)

APPROACH SLAB ON US 90 (TERREBONNE PAR.)

APPROACH SLAB ON US 90 (TERREBONNE PAR.)

LTRC – TULANE STUDY

TASKS

DEVELOP A SIMPLIFIED SOIL/STRUCTURE INTERACTION ANALYTICAL DESIGN ALGORITHIM FOR PILE-SUPPORTED APPROACH SLABS

LTRC – TULANE STUDY

ANALYTICAL METHOD

• ESTIMATE LONGITUDINAL SETTLEMENT PROFILE OF THE APPROACH SLAB BASED ON CURRENT SLAB DESIGN AND ESTIMATED PILE LOAD AND SETTLEMENT

LTRC – TULANE STUDY

ANALYTICAL METHOD

- COMPARE APPROACH SLAB SETTLEMENT PROFILE TO AN "IDEAL" SETTLEMENT PROFILE
- REPEAT THE FOREGOING STEPS UNTIL AN ACCEPTABLE SETTLEMENT PROFILE IS REACHED

TU-DRAG

- AN INTERACTIVE SPREADSHEET IN MS EXCEL AND VISUAL BASIC
- ITERACTIVE PROCESS BASED ON FINDING PILE LENGTHS ALONG APPROACH SLAB NEEDED TO DEVELOP AN ACCEPTABLE SETTLEMENT PROFILE

AS-DESIGNED PILE LENGTHS

BRIDGE AT DOTD - KENNER TUNNEL

DESIGN CRITERIA

- DESIGN AIRCRAFT: BOEING 747-400 WITH MAXIMUM TAXIWEIGHT OF 877,000 LBS.
- DESIGN METHOD: AASHTO LOAD FACTOR DESIGN METHOD (STRENGTH DESIGN)

STRUCTURAL DESIGN

PARTIAL ELEVATION - PILE-SUPPORTED APPROACH SLAB

STRUCTURAL DESIGN

MAXIMUM LOAD PER STRUT = 204,600 LBS.

BOEING 747 MAIN LANDING GEAR CONFIGURATION

15.000

7.750,

p=75.03 KSF

STRUCTURAL DESIGN

1.33

3.211

STRUCTURAL DESIGN

5.00

LOAD CASE I

SLAB DESIGN - STAAD-PRO MODEL

STRUCTURAL DESIGN

LOAD CASE II

SLAB DESIGN - STAAD-PRO MODEL

STRUCTURAL DESIGN

REQUIRED IN SLAB

SLAB DESIGN - FINITE ELEMENT MODEL

RUNWAY 10-28 SEPTEMBER, 2005

THANK YOU!

