

#### **Louisiana Coastal Protection and Restoration**



Applying Multi-Criteria Decision Analysis in Storm Damage Reduction Planning

Timothy Axtman, P.E.

Tulane Engineering Forum 9 May 2008





## **Our Decision Problems**

- Complexity due to:
  - Nature of the systems we manage
  - Number and diversity of interested and affected parties
- Risk-informed decision making includes approaches for:
  - Resolving multi-attribute risk-decision problems
  - Analyzing relevant uncertainties
  - Informing policymaking, planning and operations



### Objectives for Risk Informed Decision Making

- Support planning and decision making
  - Quantitative analysis of objectives, risks, and tradeoffs across the system of accounts
- Provide a process that supports deliberation among decision makers, partners, stakeholders
- Promote transparency in decision making
  - show to decision makers and the public the risks, costs, and consequences of plans



### **Multidimensional Nature of Risk**

- Diverse nature of the outcomes of interest
  - human health and safety,
  - economics,
  - environmental impacts,
  - affects on social systems, etc.
- Human dimensions
  - Human responses to risk are a function of values and risk perceptions and attitudes



## **Multi-Criteria Decision Analysis**

- An approach for structuring and analyzing decision problems
- Emphasis given to:
  - Defining the problem
  - Establishing explicit objectives
  - Defining output metrics for evaluating alternative solutions/plans
  - Incorporating human values and risk attitudes
    - Through weighting and utility functions
  - Ranking plans based on quantitative scores derived from outputs



### **Car-Buying Example of MCDA**

| Metric (Weight)                    | Units                  | Cars     |          |          |          |          |
|------------------------------------|------------------------|----------|----------|----------|----------|----------|
|                                    |                        | Option 1 | Option 2 | Option 3 | Option 4 | Option 5 |
| Cost (25)                          | Dollars                | 27,000   | 45,000   | 30,000   | 35,000   | 12,000   |
| Resale Value After Three Years (5) | % of Original<br>Value | 44       | 56       | 57       | 49       | 33       |
| Repair-Maintenance Cost / Year (5) | Dollars                | 100      | 500      | 1,000    | 250      | 500      |
| Fuel Efficiency (15)               | MPG                    | 30       | 25       | 45       | 27       | 32       |
| Passenger Compartment Space (15)   | ft <sup>3</sup>        | 150      | 170      | 165      | 160      | 145      |
| Style and Comfort (5)              | Qualitative            | Finest   | Finest   | Average  | Average  | Poor     |
| Safety Rating (30)                 | NHTSA Safety<br>Rating | 2        | 3        | 3        | 5        | 2        |



### **Ranking and Contributions by Metric**





#### **Contributions by Metric with Adjusted Weight**

US Army Corps of Engineers®

Cost: 25 to 30

Safety: 30 to 25





### **LACPR Objectives and Metrics**

#### **Planning Objectives**

- Reduce risk to public safety from catastrophic storm inundation
- Reduce damages from catastrophic storm inundation
- Promote a sustainable ecosystem
- Restore and sustain diverse fish and wildlife habitats, and
- Sustain the unique heritage of coastal Louisiana by protecting historic sites and supporting traditional cultures

#### **Output Metrics**

- <u>National Economic Development</u>
  - Residual damages
  - Life-cycle costs (Implementation, O&M)
  - Construction time
- Regional Economic Development
  - Gross regional output
  - Employment
  - Income
- Environmental Quality
  - Spatial integrity
  - Wetlands restored and/or protected
  - Direct impacts
  - Indirect impacts
  - Historical properties protected
  - Archeological properties protected
- Other Social Effects
  - Residual population impacted
  - Historical districts protected



### Engaging Stakeholders in Decision Making

- Allows individual stakeholders to consider and document risk / value preferences
- Ensures plans remain aligned with objectives
- Facilitates deliberation
- Captures stakeholder value information for allocating weight to outputs and risks
- Allows exploration of variation in values among stakeholders and its implications
- Is an initiation point for risk communication



#### Initial LaCPR Stakeholder Value Input

#### Five meetings in October 2007

- <u>Baton Rouge (Federal</u> <u>and State Government)</u> (22)
- <u>New Orleans (PU1 &</u> <u>PU2)</u> (23)
- <u>Houma</u> (22)
- Lake Charles (20)
- <u>Abbeville</u> (22)

- Federal and State
  - LDNR, FEMA, FHWA, USGS, USFWS, NMFS, NOAA, USEPA, LADOTD, etc.

#### Local and Parish

- New Orleans, St. Bernard, St. Tammany, Jefferson, Terrebonne, Vermillion Parishes, Ports, Levee districts, Congressional offices, mayors, etc.
- NGOs and Academia
  - BTNEP, CRCL, LPBF, Audubon, NWF, UNO, LSU, Ducks Unlimited, etc.
- Busines/Developers
  - ConocoPhillips, Shell, Tower Land Co., etc.



### Initial LaCPR Value Weight Data

Weight allocation for gov't agencies (a) and all stakeholders (b)





### **Distribution of Value Weighting**

Mean weights by aggregate planning objective for gov't agency clusters A through D (± 95% confidence limits)





US Army Corps of Engineers<sub>®</sub>

## **Alternative Plan Output Data**

| Planning Unit:           | 1 Alt. No.                                       | PU1-HL-b-400-3                                                      | Category               | Coastal Restoration + Struc   | tural Measures       |
|--------------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------|-------------------------------|----------------------|
| Alternative Description: | Maintain coast with co-<br>Southshore of Lake Po | astal restoration and build high<br>ontchartrain, LaPlace and Slide | level plan provi<br>I. | iding 400-year design level ( | of risk reduction to |
| Coastal Component:       | R2 (pulsed diversions)                           |                                                                     | Nonstructura           | al Component:                 | None                 |
| Structural Component:    | See alternative descrip                          | xtion.                                                              |                        |                               |                      |

|            |      | Metric Results by Scenario with Uncertainty Bands |                                    |                           |                                      |                        |                                       |                            |                                     |                                    |
|------------|------|---------------------------------------------------|------------------------------------|---------------------------|--------------------------------------|------------------------|---------------------------------------|----------------------------|-------------------------------------|------------------------------------|
|            |      | Life-oyale Cost                                   | Resident<br>Population<br>Impacted | Recidual<br>Damages       | Gross Regional<br>Output<br>Impacted | Employment<br>Impacted | People's<br>Earned income<br>Impacted | Aroheo, Sites<br>Protected | Historio<br>Properties<br>Proteoted | Historio<br>Districts<br>Protected |
|            |      | \$ Billions                                       | Ann. Equiv. #                      | Ann. Equiv<br>(\$ 1000's) | Ann. Equiv<br>(\$ 1000's)            | Ann. Equiv #           | Ann. Equiv<br>(\$ 1000's)             | # Sites                    | # Properties                        | # Districts                        |
|            | Low  |                                                   | 51,489                             | 1,178,484                 | 913,544                              | 4,074                  | 245,111                               | 243                        | 140                                 | 48                                 |
| Scenario 1 | Mean | 53.94                                             | 53,975                             | 1,375,076                 | 1,119,100                            | 4,820                  | 297,730                               | 273                        | 143                                 | 50                                 |
|            | High |                                                   | 58,018                             | 1,740,945                 | 1,491,314                            | 6,260                  | 396,399                               | 303                        | 143                                 | 51                                 |
|            | Low  |                                                   | 51,944                             | 1,213,640                 | 986,760                              | 4,307                  | 266,783                               | 243                        | 133                                 | 45                                 |
| Scenario 2 | Mean | 54.35                                             | 54,826                             | 1,432,557                 | 1,199,986                            | 5,040                  | 318,161                               | 273                        | 141                                 | 49                                 |
|            | High |                                                   | 59,057                             | 1,865,446                 | 1,826,456                            | 7,092                  | 472,967                               | 303                        | 143                                 | 51                                 |
| Scenario 3 | Low  |                                                   | 43,051                             | 1,089,055                 | 596,350                              | 3,173                  | 180,038                               | 243                        | 140                                 | 48                                 |
|            | Mean | 53.94                                             | 45,528                             | 1,277,069                 | 766,668                              | 3,856                  | 225,926                               | 273                        | 143                                 | 50                                 |
|            | High |                                                   | 49,242                             | 1,625,816                 | 1,106,918                            | 5,302                  | 321,310                               | 303                        | 143                                 | 51                                 |
| Scenario 4 | Low  |                                                   | 43,344                             | 1,121,766                 | 651,431                              | 3,340                  | 195,841                               | 243                        | 133                                 | 45                                 |
|            | Mean | 54.35                                             | 46,119                             | 1,328,206                 | 832,319                              | 4,046                  | 243,851                               | 273                        | 141                                 | 49                                 |
|            | High |                                                   | 49,952                             | 1,746,122                 | 1,388,230                            | 5,929                  | 380,702                               | 303                        | 143                                 | 51                                 |

| Other Metric Results           |                         |                         |          |          |             |          |          |  |
|--------------------------------|-------------------------|-------------------------|----------|----------|-------------|----------|----------|--|
| Construction Time (years)      | 16                      | Wetlands Created/       | Scen 1&3 | Scen 284 | PV Cost of  | Scen 182 | Scen 3&4 |  |
| Direct Wetland Impacts (acres) | -5,661                  | Protected (acres)       | 214,687  | 220,284  | NS Comp (\$ |          |          |  |
| Indirect Impacts               | -1                      | PV Cost of Coastal      |          |          | Billions)   | N/A      | N/A      |  |
| Spatial Integrity              | 0.478                   | Component (\$ Billions) | 10.67    | 10.90    |             |          |          |  |
|                                |                         | PV Cost of Structural   |          |          | Ţ           |          |          |  |
|                                | Component (\$ Billions) | 43.27                   | 43.45    |          |             |          |          |  |



US Army Corps of Engineers.

#### Gauging Effects of Preference on Plan Ranking





US Army Corps of Engineers<sub>®</sub>

#### Comparing Rankings Vs Preference Patterns

| Comparative MCDA Rankings Planning Unit 3b |            |            |            |            |  |  |  |
|--------------------------------------------|------------|------------|------------|------------|--|--|--|
| Plan<br>Rank                               | Weight-1A  | Weight-1B  | Weight-1C  | Weight-1D  |  |  |  |
| 1                                          | RL-100-1   | RL-100-1   | RL-100-1   | RL-100-1   |  |  |  |
| 2                                          | RL-400-1   | C-RL-100-1 | RL-400-1   | RL-400-1   |  |  |  |
| 3                                          | C-RL-100-1 | RL-400-1   | C-G-100-1  | F-1000-1   |  |  |  |
| 4                                          | NS-1000    | NS-1000    | C-F-100-1  | C-F-100-1  |  |  |  |
| 5                                          | NS-400     | NS-400     | G-100-1    | C-F-400-1  |  |  |  |
| 6                                          | C-F-100-1  | C-RL-400-1 | F-100-1    | F-100-1    |  |  |  |
| 7                                          | F-100-1    | C-F-100-1  | F-1000-1   | C-G-100-1  |  |  |  |
| 8                                          | C-RL-400-1 | F-100-1    | C-RL-100-1 | F-400-1    |  |  |  |
| 9                                          | NS-100     | NS-100     | NS-1000    | G-100-1    |  |  |  |
| 10                                         | C-F-400-1  | R1         | NS-400     | C-RL-400-1 |  |  |  |



#### Constructing a Path to Decision Making

- Identify the combination of plans that maximizes utility for the state as a whole
- Consider supplementary information on cost-effectiveness and incremental cost
  - Analysis could consider life cycle project costs and 2 risk reduction benefits, treated separately
    - Property: monetary damages avoided
    - Health and safety: residential population protected from inundation
- Move Federal decision-makers through the deliberation process
  - Consider stakeholder preference patterns
  - Consider cost effectiveness and incremental cost information
  - Consider what output values represent the Federal interest
  - Performed MCDA in real-time
  - Rank and compare plans relative to stakeholder results



## **Refining the Process**

- Seek improvement of output metrics focus on the most meaningful measures of performance
- Apply swing-weighting method to determine output weights – inform stakeholders of the range of plan performance
- Hold successive stakeholder weight elicitation meetings – keep working to narrow value differences
- Seek broader range of stakeholders local, regional, & national
- Expand the Understanding of Decision Technique

### Louisiana Coastal Protection and Restoration (LACPR)

# www.lacpr.usace.army.mil