

The Cost of Inadequate Protection

Rick Anderson

May 9, 2008

™ R M S

Bringing Science to the Art of Underwriting™

Topics

- The meaning of "100 year protection"
- Comparison to building codes, etc.
- Risk-based capital
- The cost of capital
- Annual loss cost

What Does "100-Year Protection" Mean?

Does not mean a 100 year guarantee

- Probability of failure in one year = 1 / 100 = 1%
- Equivalent to a 39.4% probability of failure over 50 years

$$-1 - (1 - 0.01)^{50} = 39.4\%$$
No failure in 1 year
No failure in 50 years

At least 1 failure in 50 years

39.4% in 50 Years

- Assumes 1% probability in each of the 50 years
- There is evidence that the probability of extreme flooding is increasing
 - Increase in mean sea level
 - Increased hurricane activity in the Gulf of Mexico
- See RMS's report "Flood Risk in New Orleans Implications for Future Management and Insurability"
 - http://www.rms.com/Publications/NO_FloodRisk.pdf

Building Code Guidelines for CA Earthquake

- Three dimensions
 - Performance state
 - Fully operational
 - Operational
 - Life safe
 - Near collapse
 - Occupancy
 - Safety-critical facilities
 - Essential / hazardous facilities
 - Basic facilities
 - Frequency of event
 - Described in probabilistic terms

Frequency Dimension

Earthquake Classification	Probability of Occurrence	Annual Probability	Probability as Fraction
Frequent	50% in 30 years	2.3%	1 / 43.8
Occassional	50% in 50 years	1.4%	1 / 72.6
Rare	10% in 50 years	0.21%	1 / 475
Very Rare	10% in 100 years	0.11%	1 / 950

6

Performance versus Frequency

7

Corporate Bond Default Probabilities

Risk-Based Capital Catastrophe Component

- National Association of Insurance Commissioners (NAIC)
 - 1/250 exceedance probability (EP)
- A.M. Best
 - 1/100 EP for windstorm
 - 1/250 EP for earthquake
- Standard & Poor's
 - 1/250 EP
- Moody's
 - Considers both the 1/100 and 1/250 EPs
- Fitch
 - 1/100 tail value at risk (TVaR)

Required Capital

- Assume \$100 billion economic loss if the levees fail
- At 1/100 EP protection level
 - All 5 of the above mentioned RBC models would require at least \$100 billion in reserve
- At 1/475 EP protection level
 - None of the RBC models would require at least \$100 billion in reserve

Annual Cost of \$100 Billion of Capital

Interest Rate	Annual Cost
3%	\$3 billion
4%	\$4 billion
5%	\$5 billion
6%	\$6 billion
7%	\$7 billion

Annual Loss Cost

- Assume cost of failure = \$100 billion
- Expected cost of failure in a year
 - = \$100 billion * probability of failure

Protection Level	Annual Loss Cost (\$ million)
1/100	1,000
1/200	500
1/500	200
1/1,000	100
1/10,000	10

12

Summary

- The cost of inadequate protection includes both the annual loss cost and the cost of capital.
- For a 1/100 protection level, the annual cost can be from \$4 billion to \$8 billion, depending on the interest rate
- This cost needs to be included in the analysis of the cost of building the levees to different protection levels.

